Empowering Al through frugality

Amparo Alonso-Betanzos CITIC-University of A Coruña. SPAIN

UNIVERSIDADE DA CORUÑA

- ICPRAM 2025

14th International Conference on Pattern Recognition Applications and Methods

Porto, Portugal

23 - 25 February, 2025

KNOWLEDGE

Systems designed by humans which, given a complex goal, act in their environment (physical or digital) by perceiving this environment through data acquisition, interpreting the collected structured or unstructured data, reasoning about the knowledge derived from this data, and deciding the best actions to take.

Machine

Learning

• Myth: Technological singularity is the most relevant problem

- Reality: Privacy, bias, the possibility of manipulation and exhaustive surveillance, responsibility, sustainability, and technological monopoly are real true problems now.
- We need companies and public powers with ethical and moral codes, and more and better informed and critical citizens.

2021

EU Artificial Intelligence Act: Risk levels

<u>EU Parliament's priority</u> is to make sure that AI systems used in the EU are safe, transparent, traceable, nondiscriminatory and environmentally friendly

2023

Article 28b(2)(d) required providers of foundation models to adhere to standards for reducing energy and resource use, improving energy efficiency, and enabling measurement and logging of environmental impact

2024

EU

Artificial

Intelligence Act

Deep and steep Computing power used in training AI systems Days spent calculating at one petaflop per second*, log scale 100 -, 3.4-month By fundamentals AlphaGo Zero becomes its own · & doubling 10 teacher of the game Go Language Speech OVision 1 Other Games AlexNet, image classification with 0.1 deep convolutional neural networks - o o 0.01 00 0 0.001 -- 95-" ---0-----0 0 0.0001 Two-year doubling -0-0 0.00001 (Moore's Law) → Modern era ← First era → 0.000001 Perceptron, a simple artificial neural network 0.0000001 -0-80 90 2000 1960 70 10 20 *1 petaflop=1015 calculations Source: OpenAl The Economist

	RMSE	gCO2	
Model	(Performance)	(Emissions)	
Random	1,707	N/A	
Naive (Dyad Average)	0,958	N/A	
MF	0,840	56,449	
GC-MC	+1% 0,846	<u>243,349</u>) x
Bayesian SVD++	perf 0,830	358,900	Sco
Glocal-K	0,826	2038,492	

Training:

- 1.300.000kWh ٠
- 552 ton. CO2 ٠
- 700.000 l. water •

Annual energy consumption of 126 houses in Denmark

700.000 km

CO2 equivalent emissions (tonnes) by select machine learning models and real-life examples, 2020-23

Access January 2023:

590 milions •

Electricity consumption of 175,000

people

Al models are devouring energy. Tools to reduce consumption are here, if data centers will adopt.

Amid the race to make AI bigger and better, Lincoln Laboratory is developing ways to reduce power, train efficiently, and make energy use transparent.

SEPTEMBER 22, 2023 | Kylie Foy | Communications & Community Outreach Office

ENERGY TRANSITION - 16 Oct 2023 | 21:15 UTC

POWER OF AI: Wild predictions of power demand from AI put industry on edge

HIGHLIGHTS

Significant net increase in demand expected

Some applications could reduce demand

The GPUs to train GPT-3 consumed 1,300 megawatt-hours of electricity

• Use of 1,450 American homes per month

Carbon emissions of the computing industry, with AI at the helm, are greater than those of the aeronautical industry

Google says AI currently accounts for between 10 and 15% of its energy use, 2.3 TWh per year.

Google has used 15.8 billion liters of water to maintain the correct temperature in its data centers.

The world's data centers consume 416Tw

- 3% of global electricity consumption
- 40% more than the UK's annual consumption
- The electricity demand they require will multiply by 15 between now and 2030, reaching 30% of global energy consumption.

If the trend continues, in 2026 AI consumption will equal that of Japan

MODEL	YEAR	N. PARAMETERS (Billions)	TRAINING COST (Dollars)
GPT-2	2019	1,5	50,000
PaLM	2022	540 (360 times bigger)	8 Milions (160 times more expensive)

5,6 M dollars

Costs per million output token Open AI R1- 60\$ DeepSeekR1-2,19\$

Number of notable machine learning models by sector, 2003–23 Source: Epoch, 2023 | Chart: 2024 Al Index report

Figure 1.3.1

Number of notable machine learning models by select geographic area, 2003–23

Source: Epoch, 2023 | Chart: 2024 Al Index report

Huge computing overhead

≻ RED AI

Accuracy as the only objective

Take into account the environmental, social and economic repercussions of AI

GREEN AI

Balanced multidimensional assessment

Frugal AI

Al designed to operate efficiently with limited resources

PRINCIPLES

Resource efficiency

Low cost

Simplicity

Sustainability

Democratizes AI access for low-resource environments

Final Readings Average baseline wattage: 1.86 watt Average total wattage: 19.42 watt Average total wattage: 17.56 watt Process duration: 9:00:6 Energy mix in Pennsylvania 25.42 Coal: 25.42 Oil: 0.11 Natural Gas: 31.64 Low Carbon: 42.52 Effective emission: 4.05e-06 kg CC Equivalent miles driven: 1.66e-12 mil Equivalent miles driven: 1.66e-21 mil Equivalent miles driven: 1.66e-22 mil Equivalent miles driven: 1.66e-21 mil Coal: 995.725971 kg CO2/M Petroleum: 816.6885263 kg CO2/M Natural gas: 743.8415916 kg CO2/M Low carbon: 0 kg CO2/M	Locatio	n:						P	enns	ylvania
Average baseline wattage: 1.86 watt Average total wattage: 19.42 watt Average process wattage: 17.56 watt Process duration: 0:00:0 Energy Data 0:00:0 Coal: 25.42 Natural Gas: 31.66 Low Carbon: 4.05e-06 kg Cl Equivalent minutes of 32-inch LCD TV watched: 2.51e-03 minut. Percentage of CO2 used in a US household/day: 1.36e-12 milu. Coal: 995.725971 kg CO2/M Coal: 995.725971 kg CO2/M Coal: 995.725971 kg CO2/M Petroleum: 816.6885263 kg CO2/M Natural gas: 743.8415916 kg CO2/M Low carbon: 0 kg CO2/M Coal: 995.725971 kg CO2/M				Final Re	adings					
Average total wattage: 19.42 watt Average process wattage: 17.56 watt Process duration: 0:00:0 Energy Data 0:00:0 Coal: 25.42 Natural Gas: 31.64 Low Carbon: 4.052-06 kg Cl Effective emission: 4.052-06 kg Cl Equivalent minutes of 32-inch LCD TV watched: 2.5.42 Equivalent minutes of 32-inch LCD TV watched: 2.510-03 minut. Percentage of CO2 used in a US household/day: 1.366-12 milu. Coal: 995.725971 kg CO2/M Petroleum: 816.6885263 kg CO2/M Natural gas: 743.8415916 kg CO2/M Low carbon: 0 kg CO2/M	Average	baseline wat	:tage:						1.8	6 watts
Average process wattage: 17.56 watt Process duration: 0:00:6 Energy mix in Pennsylvania 25.42 Coal: 25.42 Oili 0.11 Natural Gas: 31.64 Low Carbon: 4.05e-06 kg CC Equivalent minutes of 32-inch LCD TV watched: 2.51e-03 minut. Percentage of CO2 used in a US household/day: 1.38e-11	Average	total wattag	;e:						19.42	2 watts
Process duration: 0:00:6 Energy Data Energy Data Coal: 25.42 Oil: 0.17 Natural Gas: 31.64 Low Carbon: 42.52	Average	process watt	age:						17.50	6 watts
Energy Data Energy mix in Pennsylvania Coal: 25.42 Oil: 0.17 Natural Gas: 31.64 Low Carbon: 42.52	Process	duration:							(0:00:01
Energy mix in Pennsylvania Coal: 25.42 Ofl: 0.17 Natural Gas: 31.64 Low Carbon: 42.52				Energy	Data					
Coal: 25.42 ofl: 0.17 Natural Gas: 31.64 Low Carbon: 42.52			Energ	y mix in	Pennsylv	ania				
0il: 0.17 Natural Gas: 31.64 Low Carbon: 42.52	Coal:									25.42%
Natural gas: 31.64 Low Carbon: 42.52 Effective emission: 4.05e-06 kg Ct Equivalent miles driven: 1.66e-12 mil Equivalent miles driven: 1.66e-12 mil Equivalent miles driven: 1.66e-12 mil Equivalent miles driven: 1.33e-1: Percentage of CO2 used in a US household/day: 1.33e-1:	Oil:									0.17%
Low Carbon: 42.52 Emissions Effective emission: 4.05e-06 kg CI Equivalent miles driven: 1.66e-12 milu Equivalent minutes of 32-inch LCD TV watched: 2.51e-03 minut Percentage of CO2 used in a US household/day: 1.33e-1:	Natural	Gas:								31.64%
Emissions Effective emission: 4.05e-06 kg Cl Equivalent miles driven: 1.66e-12 mil Equivalent minutes of 32-inch LCD TV watched: 2.51e-03 minut. Percentage of CO2 used in a US household/day: 1.33e-11	Low Carl	bon:								42.52%
Effective emission: 4.05e-06 kg C Equivalent miles driven: 1.66e-12 mil Equivalent minutes of 32-inch LCD TV watched: 2.51e-03 minut. Percentage of CO2 used in a US household/day: 1.33e-11				Emissi	ons					
Equivalent miles driven: 1.66e-12 milt Equivalent minutes of 32-inch LCD TV watched: 2.51e-03 minut. Percentage of CO2 used in a US household/day: 1.33e-11	Effecti	ve emission:						4.05	 e-06	kg C02
Equivalent minutes of 32-inch LCD TV watched: 2.51e-03 minute Percentage of CO2 used in a US household/day: 1.33e-1: 	Equival	ent miles dr	iven:					1.6	6e-1	2 miles
Percentage of C02 used in a US household/day: 1.33e-1:	Equival	ent minutes o	of 32-inch LO	CD TV watc	:hed:			2.51e	-03	minutes
Assumed Carbon Equivalencies Coal: 995.725971 kg C02/M Petroleum: 816.6885263 kg C02/M Natural gas: 743.8415916 kg C02/M Low carbon: 0 kg C02/M	Percent	age of CO2 us	sed in a US H	nousehold/	day:				1.	33e-12%
Coal: 995.725971 kg C02/M Petroleum: 816.6885263 kg C02/M Natural gas: 743.8415916 kg C02/M Low carbon: 0 kg C02/M Emissions Comparison Europe Quantities below expressed in kg C02 US Europe Global minus US/Europe Median: Tennessee 4.708-06 Ukraine Min: Vermont 2.698-07 Iceland 1.77e-06 Bhutan Densere used 1.044-05 M			Assume	ed Carbon	Equivale	encies ·				
Petroleum: 816.6885263 kg C02/M Natural gas: 743.8415916 kg C02/M Low carbon: 0 kg C02/M	Coal:						995	725971	kg	C02/MWH
Natural gas: 743.8415916 kg C02/M Low carbon: 0 kg C02/M Emissions Comparison Quantities below expressed in kg C02 VS US Europe Global minus US/Europe Global minus US/Europe Median: Yenesee 4.70e-06 UK raine 6.88e-06 Korea, South Vermont 2.69e-07 Inclusion 1.10e-10	Petrole	um:					816.0	5885263	kg	CO2/MWh
Low carbon: 0 kg C02/M 	Natural	gas:					743.8	8415916	kg	CO2/MWP
Emissions Comparison Quantities below expressed in kg CO2 US Europe Global minus US/Europe Max: Wyoming 9.59e-06 Kosovo 9.85e-06 Mongolia 9.64e-1 Median: Tennessee 4.70e-06 Ukraine 6.88e-06 Korea, South 7.87e-1 Min: Vermont 2.69e-07 Iceland 1.77e-06 Bhutan 1.10e-1	Low car	bon:						0	kg	CO2/MWh
Quantities below expressed in kg CO2 US Europe Global minus US/Europe Max: Wyoming 9.59e-06 Kosovo 9.85e-06 Mongolia 9.64e- Median: Tennessee 4.70e-06 Ukraine 6.88e-06 Korea, South 7.87e- Min: Vermont 2.69e-07 Iceland 1.77e-06 Bhutan 1.10e-			Er	nissions C	ompariso	on ·				
US Europe Global minus US/Europe Max: Wyoming 9.59e-06 Kosovo 9.85e-06 Mongolia 9.64e-1 Median: Tennessee 4.70e-06 Ukraine 6.88e-06 Korea, South 7.87e-1 Min: Vermont 2.69e-07 Iceland 1.77e-06 Bhutan 1.10e-1			Quantities	below ex	pressed	in kg (CO2			
Max: Wyoming 9.59e-06 Kosovo 9.85e-06 Mongolia 9.64e-0 Median: Tennessee 4.70e-06 Ukraine 6.88e-06 Korea, South 7.87e-0 Min: Vermont 2.69e-07 Iceland 1.77e-06 Bhutan 1.10e-0		US		Europe			Global	minus	US/E	urope
Median: Tennessee 4.70e-06 Ukraine 6.88e-06 Korea, South 7.87e-1 Min: Vermont 2.69e-07 Iceland 1.77e-06 Bhutan 1.10e-1	Max:	Wyoming	9.59e-06	Kosovo	9.	85e-06	Mongol	ia	9	.64e-06
Min: Vermont 2.69e-07 Iceland 1.77e-06 Bhutan 1.10e-0	Median:	Tennessee	4.70e-06	Ukraine	6.	88e-06	Korea,	South	7	.87e-06
	Min:	Vermont	2.69e-07	Iceland	1.	.77e-06	Bhutan		1	.10e-06
PLULACE LICENT.	Process							1	 040	

Q

Ayuda Patrocinadores

https://hiili.org

ML CO2 Impact	Compute	Publish	Learn	Act A	bout
Machine Learning E	mission	s Cal	cula	tor	
This calculator will give you 2 numbers: the raw carb carbon emissions. The latter number depends on the update our estimates if anything	on emissions produc grid used by the clo glooks inaccurate or	ed and the a id provider a outdated.	pproximate nd we are o	offset open to	
Also, keep in mind that the estimate provided bel Effectiveness) into account. To do so, you need to fi provider or consulting their documentation) and multi that nu	ow does not take da nd your datacenter's ply the quantity of ca mber.	tacenter PUE PUE (by aski rbon emittei	(Power Usang your com provided b	age iputer selow by	
Hardware type Hours Used	Provider		Region o	f Compute	
A100 PCIe 40/80G > 100	Google Cloud Pl	at ~	asia-eas	1 ~	
Com	UTE				

codecarbon 2.3.4

Buscar proyectos

pip install codecarbon 🏮

CALCULATING ENERGY AND REPORTING

STRATEGIES

OBJECTIVES:

Reducing acquisition, storage and exploitation costs Improving data quality

OTHER NEEDS ADDRESSED:

Resource restrictions, privacy,..

ALTERNATIVES:

Using less data or features Smaller and well curated datasets Improve data quality

HOW?

- Feature selection
- Positive Unlabelled Learning (PU Learning)
- Active / Few-shot learning

FEATURE SELECTION. New measures

Centralized vs. distributed feature selection methods based on data complexity measures L. Morán-Fernández, V. Bolón-Canedo, A. Alonso-Betanzos

Laboratory for Research and Development in Artificial Intelligence (UDIA), Computer Science Dept., University of A Caruña, 15071 A Caruña, Spain

Table 6

Maximum runtime (s) for the feature selection methods tested. C stands for centralized approaches, while D refers to the distributed approaches.

			Connect4	Isolet	Madelon	Ozone	Spambase	Mnist	SpeedUp
	CFS	C D	100 10	250 77	36 25	10 8	12 6	1787 257	5.73
· · · ·	INT	C D	112 11	196 70	40 31	9 8	13 14	3145 199	10.56
	Cons	C D	268 10	245 80	52 25	11 6	14 2	6163 197	21.10
	IG	C D	97 4	171 54	41 29	9 9	11 5	1451 235	5.30
	ReliefF	C D	1680 11	553 103	62 40	14 8	21 4	30,413 1346	21.66

Fig. 4. Comparing the centralized and distributed approaches using horizontal partition in terms of classification accuracy.

FEATURE SELECTION. Reduced precision models

Check for updates

Feature selection with limited bit depth mutual information for portable embedded systems

Fixed point in Mutual Information-

Laura Morán-Fernández^{a,*}, Konstantinos Sechidis^b, Verónica Bolón-Canedo^a, Amparo Alonso-Betanzos^a, Gavin Brown^b ^a (III): Universidade da Grutta, A Coruña, Spain ^b School of Compute Schene, University of Manchester, Manchester, UK

based algorithms

LED-500 500 feat, 200,000 samples

3-NN

5-fold cross validation Friedman test with Nemenyi post-hoc test

PU Learning : Visual explanation with pre-existent content

Learning Training Data : Images of users' reviews 2 (platings, ru1 interior design 124 fo (outside views summer run drink/food and i_6 $||i_4|$ i_2 fo ambience...) (wines, tapas platings...) fô **i** *i i i i* i_5 (interior ru4 design, decoration ro) i_4 i_4 **1** *i*₃ ML Model Learn photographic preferences of each user

		Train Partition	Test Partition				
City	Users	Restaurants	Images	Users	Restaurants	Images	
Gijon	5,139	598	16,302	1,023	346	2,377	
Barcelona	33,537	5,881	130,674	8,697	3,211	19,742	
Madrid	43,628	6,810	176,763	11,874	3,643	27,142	
New York	61,019	7,588	196,315	16,842	4,135	34,826	
Paris	61,391	11,982	219,588	15,242	6,345	32,048	
London	134,816	13,888	416,356	30,393	8,097	63,442	

NDCG@10

Method	Features	Classifier	Performan	nce (avg of 10 runs)		
Method	reatures	Classifier	AUC-ROC	G. Mean	F1 Score	
	PathDIP	CAT	0.829	0.717	0.522	
Original	ration	BRF	0.825	0.752	0.450	
Original	60	CAT	0.832	0.654	0.463	
	30	BRF	0.827	0.755	0.377	
	PathDIP	CAT	0.829	0.750	0.537†	
PULLearning	ration	BRF	0.815	0.728	0.381	
ro ceaning	60	CAT	0.838†	0.726	0.491	
	30	BRF	0.829	0.763†	0.380	

Check for updates

Computers in Biology and Medicine 180 (2024) 108999

Positive-Unlabelled learning for identifying new candidate Dietary Restriction-related genes among ageing-related genes

Jorge Paz-Ruza[®], Alex A. Freitas[®], Amparo Alonso-Betanzos[®], Bertha Guijarro-Berdiñas[®] [±]UDA Group, CITC, Universidad: da Corria, Compus de Ebbla (m. A. Corria 15071, Spain ^{*}School of Computing: University of Kar, Camerina y CI 728, United Ringfon

Original non-	PU-Learning method	KNN-based PU-Learning method			
Gene	DR-Probability	Gene	DR-Probability		
GOT2	0.86	TSC1	0.97		
GOT1	0.85	GCLM	0.94		
TSC1	0.85	IRS1	0.93		
стн	0.85	PRKAB1	0.92		
GCLM	0.82	PRKAB2	0.90		
IRS2	0.80	PRKAG1	0.90		
SENS2	0.80	IRS2	0.90		

ACTIVE LEARNING

Network Architecture Search (NAS)

Model training

OBJECTIVES:

To develop more sustainable models

OTHER NEEDS ADDRESSED:

Privacy, Bias, Opacity, Restrictions in resources

WHAT CAN BE DONE?

Using simpler models, with less parameters and lower hardware needs HOW?

- Green algorithms and low precision models
- Modular Learning and Long-life learning

Inference

Impact of Epochs

Emissions (lbs)

Table 3. Impact of transfer learning on energy consumption.

Marginal performance gains, exponential increase in CO₂ emissions in training

	RMSE	gCO2	
Model	(Performance)	(Emissions)	
Random	1,707	N/A	
Naive (Dyad Average)	0,958	N/A	
MF	0,840	56,449	
GC-MC	+1% 0,846	<u>243,349</u>),
Bayesian SVD++	perf 0,830	358,900	5 °
Glocal-K	0,826	2038,492	

- Personalization is not for free
 - Models should understand, learn and proccess data from many different individual users.

More sustainable models

26th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES 2022)

Sustainable Personalisation and Explainability in Dyadic Data Systems Jorge Paz-Ruza^{**}, Carlos Eiras-Franco^{*}, Bertha Guijarro-Berdiñas^{*}, Amparo Alonso-Betanzos^{*}

Alonso-Betanzos^a "CITIC. Universidade da Coruña. 1507 l A Coruña, Spain

	Total CO	02 emissions (g)		Trainir	ng Times (s)
Dataset	Deep Learning	Matrix Factorization		ELVis	Proposed Model
Gijón	1.5	0.4	Gijón	240 ± 4.35	53.90 ± 1.80
Barcelona	9.2	1.8	Madrid	2465 ± 16.1	696 ± 5.02
Madrid	16.0	3.5	Barcelona	1530 ± 10.4	436 ± 5.49
New York	42.8	7.9	New York	2865 ± 19.5	746 ± 7.31
Paris	57.8	10.0	Paris	2940 ± 14.5	786 ± 6.48
London	138.8	19.1	London	5197 ± 48.9	1578 ± 17.4

	Gijón	
	MRecall@10	MNDCG@10
RND	0.373	0.185
CNT	0.464	0.218
ELVis	0.521	0.262
MF-ELVis	0.538	0.285
	Nueva York	
	MRecall@10	MNDCG@10
RND	0.374	0.168
CNT	0.431	0.217
ELVis	0.553	0.304
MF-ELVis	<u>0.516</u>	0.276
	Londres	
	MRecall@10	MNDCG@10
RND	0.342	0.155
CNT	0.400	0.200
ELVis	0.530	0.293
MF-ELVis	0.531	0.267

Information Fusion 111 (2024) 1024

Full Length Article

Sustainable transparency on recommender systems: Bayesian ranking of images for explainability

Jorge Paz-Ruza^{*}, Amparo Alonso-Betanzos, Bertha Guijarro-Berdiñas, Brais Cancela, Carlos Eiras-Franco

Universidade da Coraña, CITIC, Campus de Elviña s/n, 15008, A Coraña, Spain

Train all epochs

	Gijón			Barcelona			Madrid		
	MRecall@10	MNDCG@10	MAUC	MRecall@10	MNDCG@10	MAUC	MRecall@10	MNDCG@10	MAUC
RND	0.373	0.185	0.487	0.409	0.186	0.502	0.374	0.171	0.499
CNT	0.464	0.218	0.546	0.443	0.219	0.554	0.420	0.203	0.557
ELVis	0.521	0.262	0.596	0.597	0.327	0.631	0.572	0.314	0.638
MF-ELVis	0.538	0.285	0.592	0.557	0.293	0.596	0.528	0.279	0.601
BRIE	0.607	0.333	0.643	0.630	0.368	0.663	0.612	0.348	0.673

	Newyork			Paris			London		
	MRecall@10	MNDCG@10	MAUC	MRecall@10	MNDCG@10	MAUC	MRecall@10	MNDCG@10	MAUC
RND	0.374	0.168	0.502	0.459	0.209	0.502	0.342	0.155	0.500
CNT	0.431	0.217	0.563	0.499	0.245	0.557	0.400	0.200	0.562
ELVis	0.553	0.304	0.637	0.643	0.352	0.630	0.530	0.293	0.629
MF-ELVis	0.516	0.276	0.602	0.606	0.323	0.596	0.531	0.267	0.597
BRIE	0.598	0.341	0.677	0.669	0.391	0.666	0.563	0.318	0.665

		GIJÓN			
	Performance			Sustainability	
	MRecall@10	MNDCG@10	MAUC	No. of Params	CO ₂ Emiss.
RND	0,373	0,185	0,487	N/A	N/A
CNT	0,464	0,218	0,546	N/A	N/A
ELVis	0,521	0,262	0,592	<u>1.840.128</u>	1,820
MF-ELVis	0,538	0,285	<u>0,596</u>	6.835.200	0,975
BRIE	0,607	0,333	0,643	53.400	0,486

_

-

Can Federated Learning Save The Planet?

Xinchi Qiu¹, Titouan Parcollet^{2,1}, Daniel J. Beutel^{1,5}, Taner Topal^{1,5}, Akhil Mathur³, Nicholas D. Lane¹ ¹ University of Cambridge, UK ² Avignon Université, France ³University College London, UK ⁵Adap, Germany xq227@cam.ac.uk

Country/CO ₂ (g)	V100	K80	V100) K80	FL (I	ID)	FL (n	on-IID)
CIFAR10	PUE	= 1.67	PUI	S = 1.11	1 ep	5 cp	1 ep	5 cp
USA	3.1	6.5	2.1	4.3	2.3	6.5	10.9	8.9
China	5.5	11.5	3.7	7.7	4.1	11.6	19.4	14.2
France	0.4	0.9	0.3	0.6	0.3	0.9	1.6	1.1

Country/CO2(g)	V100	K80	V100	K80	FL	FL
	PUE	- 1.67	PUE	- 1.11	IID	non-IID
USA	1.6	5.2	1.1	3.5	0.5	1.0
China	2.9	9.2	1.9	6.2		1.7
France	0.2	0.8	0.2	0.5	0.1	0.1

Emissions (gr) for centralized training and federated learning in CIFAR10 and Fashi MNIST

Ep. Local epochs per clients . IID clients with an equal distribution among all cla

Class-incremental learning

OBJECTIVES

- Competitive accuracy for resource-constrained environments
- Avoid catastrophic forgetting
- Reduce training time and energy-consumption

PROPOSAL

- Single-step optimization process
- Compressed buffer mechanism

Class-incremental learning

Model	#P	Duration (min.) ↓	Emissions (kg CO ₂ -eq) ↓	Energy Consumed (kWh) ↓	\bar{A} †	$A_B \uparrow$
Finetune	0.46	14.17	0.012	0.068	17.58	5.25
BIC	0.46	113.28	0.089	0.512	53.65	26.91
Coll	0.46	309.88	0.180	1.031	59.14	34.61
FOSTER	0.46	75.96	0.075	0.430	63.54	48.43
GEM	0.46	136.72	0.145	0.834	20.87	6.99
CaRL.	0.46	44.94	0.041	0.237	54.58	34.87
PODnet	0.46	62.98	0.056	0.322	49.22	28.41
Replay	0.46	16.33	0.015	0.084	54.49	34.05
RMM-FOSTER	0.46	76.36	0.075	0.429	67.03	51.10
WA	0.46	45.61	0.042	0.239	59.30	42.75
MEMO	7.14	66.80	0.064	0.367	68.49	54.34
DER	9.27	102.44	0.116	0.667	71.34	57.34
Ours	0.46	18.05	0.015	0.085	61.28	47.51

TABLE V CONSUMPTION ENVIRO

Comparison of energy consumption, environmental impact, and accuracy of various methods on ImageNet-100 dataset with a 5-class increment setting.

Model	2 P	Duration (min.) ↓	Emissions (kg CO ₂ -eq) ↓	Energy Consumed (kWh) ↓	Æ	A_B^{\dagger}
Finetune	11.17	188.93	0.198	1.136	17.60	4.64
Coll FOSTER	11.17 11.17	1812.03 953.89	L323 L119	7.599 6.428	57.29 66.01	33.60 53.50
GEM" ICaRL	11.17	536.53	0.599	3.440	54.97	33.06
Replay Replay	11.17	22692	0.227		5628	35.38
WA MEMO	11.17 170.60	544.00 758.81	0.602 0.847	3.461	63.21 68.42	4672
Ours	11.17	1354.40 80.52	0.053	0.304	74.88	63.66

NEXT AI GENERATION

ICPRAM 2025

14th International Conference on Pattern Recogn Applications and Methods

Porto, Portugal

23 - 25 February

Amparo Alonso-Betanzos amparo.alonso.betanzos@udc.es CITIC-University of A Coruña. SPAIN

AINABLE

UNIVERSIDADE DA CORUÑA