The Challenge of Computing Responsible Al

Professor Thomas B. Moeslund Aalborg University, Denmark

VISUAL ANALYSIS & PERCEPTION LAB

Agenda

- Who am I?
- Why are we talking about Responsible AI?
- How do we compute Responsible AI?
- The end-game of AI
- Q&A

Who am I?

- Head of Section for Media Technology (40 researchers)
- Head of AI for the People Center (150 researchers)
- Head of Visual Analysis and Perception lab (35 researchers)

- Pioneer Center for AI (co-lead): 50M EUR
- Center for AI in Society (co-lead): 7M EUR
- Responsible AI for Value Creation (lead): 3M EUR

Visual Analysis and Perception (VAP) Lab

Started in 2011 as 'Visual Analysis of People' Lab Research field: Computer Vision & Al

Research interest:

Building intelligent systems that make sense out of (visual) data

The people of VAP

Professor	3
Associate Professor	3
Assistant Professor	4
Postdoc	8
PhD	14
Research assistants	3
Total	35

Research

• Drivers:

- Curiosity
- Real-world problems
- Different sensors

• Domains:

- Surveillance
- Traffic
- Robotics
- Sports
- Healthcare
- Machine vision
- Underwater
- Responsible Al

Fish & other animals

VAP LAB 2025

Responsible AI

SFM + 3DGS Optimization L/R + Disparity

3D Vision

Surveillance & sports

Quality inspection

Agenda

- Who am I?
- Why are we talking about Responsible AI?
- How do we compute Responsible AI?
- The end-game of AI
- Q&A

Deep learning

It works 🙂

• The tech is working 😊

• But...

How do we deal with this?

Responsible Al

Source: Gartner Commercial reuse requires approval from Gartner and must comply with the Gartner Content Compliance Policy on gartner.com. © 2024 Gartner, Inc. and/or its affiliates, All rights reserved, GTS 3282450

Different attitudes towards Responsible Al

- Innovation vs regulation
 - Fast vs slow
- Fear of missing out
- Start-up mindset: Move fast and break stuff until it works....
- Trust & democracies are eroded
- Hold back until we know what we are doing

EU's approach: Responsible AI via Regulation

- Responsible TECH: Nuclear weapon limited spread. Cloning

EU Artificial Intelligence Act: Risk levels

Agenda

- Who am I?
- Why are we talking about Responsible AI?
- How do we compute Responsible AI?
- The end-game of AI
- Q&A

How to compute Responsible AI (RAI)

Robustness - Data drift

- 8 months
- Four classes
- 6.8M annotations

	Train			Test 1	
Method			Jan.	Apr.	Aug.
YOLOv5	Feb.		0.7930	0.4860	0.4830
	Feb.	+ Mar.	0.8690	0.6640	0.6110
Faster R-CNN	Feb.		0.6400	0.2560	0.3180
	Feb.	+ Mar.	0.6990	0.3910	0.3380

[Ivan Nikolov et al. Seasons in Drift. NeurIPS'21]

Robustness - Data drift

- 8 months
- Four classes
- 6.8M annotations

	Train			Test	
Method			Jan.	Apr.	Aug.
YOLOv5	Feb.		0.7930	0.4860	0.4830
	Feb.	+ Mar.	0.8690	0.6640	0.6110
Faster R-CNN	Feb.		0.6400	0.2560	0.3180
	Feb.	+ Mar.	0.6990	0.3910	0.3380

[Ivan Nikolov et al. Seasons in Drift. NeurIPS'21]

Robustness - Data drift

Takeaways

- We don't have a good method for detecting drift automatically
- Not clear how to mitigate
- Drift metrics?
- Additional research needed

How to compute Responsible AI (RAI)

Robustness - Out of distribution

Robustness - Out of distribution

- 20 post-hoc OOD detectors
- 396 trained classifiers
- 7 OOD datasets

[Galadrielle Humblot-Renaux et al. A noisy elephant in the room. CVPR'24]

Robustness - Out of distribution

<u>Takeaways</u>

- We don't have a good method for detecting OoD (in the face of label noise)
- Label noise is an underrated problem
- Metrics?
- Additional research needed

Transparency - XAI

Transparency - XAI

Method: Similarity Difference and Uniqueness (SIDU)

Transparency - XAI

Transparency - XAI

$$w_1^c \cdot \boxed{ + w_2^c \cdot \boxed{ + w_2^c \cdot \boxed{ + w_N^c \cdot \boxed{ + w_N$$

27

Transparency - XAI

28

Transparency - XAI

- 100

- 50

29

Transparency - XAI

Transparency - XAI

- How do we quantify XAI?
- For whom is this explanation relevant?
 - Debugging tool

<u>Takeaways</u>

- We don't have a good metric for XAI performance
- Additional research needed
 - We need to involve end-users
 - UX
 - XAI interface
 - Human-XAI Interaction

The right to be forgotten - Machine Unlearning

- Remove data-point & retrain ('gold standard')
 - Not always possible
 - Expensive
- Remove data-point & keep the model
 - Is it ok (legal & fair) that outputs are based on deleted data?

AALBORG

DENMARK

VERSITY

- Deleted data can be recreated
- Other motivations for Machine Unlearning
 - Remove feature (gender, age, etc.)
 - Remove noise
 - Remove malicious data

The right to be forgotten - Machine Unlearning

[Alex P. Vidal et al. Verifying Machine Unlearning with Explainable AI. ICPRW), 2024]

The right to be forgotten - Machine Unlearning

<u>Takeaways</u>

- Machine Unlearning is a very new topic
 - We don't have good methods for unlearning
- Additional research needed
 - Degree of unlearning vs performance

Agenda

- Who am I?
- Why are we talking about Responsible AI?
- How do we compute Responsible AI?
- The end-game of AI
- Q&A

Responsible AI - The end-game

• Dystopia vs utopia

AALBORG UNIVERSITY DENMARK

The end-game

• Man vs tech

The end-game

Man & tech

HUMAN COMMUNICATION OVER TIME

Conclusion

- Go home and think about it: where will it all end?
- AI will be regulated
- How to translation the general terms into computational methods/metrics
 - Still open research questions => But will be defined now...
 - EU: CEN-CENELEC

Conclusion

- Go home and think about it: where will it all end?
- AI will be regulated
- How to translation the general terms into computational methods/metrics
 - Still open research questions => But will be defined now...

THANK YOU FOR YOUR ATTENTION!

