
1

Transparency of Tools
Beyond Usability in Modeling Tools

Alfonso Pierantonio

SWEN / Software Engineering Research Group

Università degli Studi dell’Aquila, Italy

3

Context

Modeling tools are fundamental enablers in MDE

⎻They provide the environment for creating, manipulating,
transforming, and managing domain-specific notations

⎻In education, they facilitate abstraction, guiding students from
concrete thinking to higher-level modeling across levels

Bencomo, N., Cabot, J., Chechik, M., Cheng, B. H., Combemale, B., Wąsowski, A., &
Zschaler, S. (2024). Abstraction Engineering. arXiv preprint arXiv:2408.14074.

4

Objective

This presentation aims to

⎻Analyze the limitations of current modeling tools and their impact
on usability, accessability, and efficiency

⎻Explore key characteristics that address existing limitations and
prepare them for future advancements

Foundational concepts in philosophy and cognitive
psychology can offer new perspectives

5

Jean Piaget (1896–1980)
Developmental and Cognitive Psychology

Defined the concept of cognitive schemata

Martin Heidegger (1889 – 1976)
Phenomenology, Philosophy of Technology

Directly defines tool transparency (ready-to-hand)

A tool is transparent when its users
develop a cognitive schema

6

From Heidegger’s tool transparency to Piaget’s
cognitive schemata—understanding how tools

shape thought and action

7

Philosophical Foundations

Martin Heidegger (1889–1976) provides the
most direct philosophical foundation for
transparency in tools

⎻In his philosophy, tools (or equipments) are not
merely objects, but mediators that shape human
interaction with the world

Heidegger, M. (1927) Sein und
Zeit. Halle: Max Niemeyer Verlag

8

Classification of Tools (ready-to-hand)Classification of Tools

Heidegger suggests how tools can either facilitate or hinder
user engagement

⎻A tool is ready-to-hand when it seamlessly integrates into the
user’s actions as an extension of their capabilities, allowing full
focus on the task without conscious thought

⎻For a tool to become ready-to-hand, the user must develop or
adapt their cognitive schemata

9

A Flushing System

The interface for flushing the toilet
is immediately clear and intuitive

⎻The buttons are designed so that users
interact with them without conscious
thought

⎻The flushing system is ready-to-hand !

10

Schemata in Cognitive Psychology

There is a strong conceptual parallel between being
ready-to-hand and cognitive schemata

⎻Cognitive schemata reside in our knowledge
system, shaping how we perceive, learn, and make
decisions

⎻They are constantly being created, adapted, and
reorganized as we interact with the world

Piaget, J. (1926). The Language and Thought of the
Child. London: Routledge & Kegan Paul.

11

Heidegger suggests how tools can either facilitate or hinder
user engagement

⎻A tool is present-at-hand when it becomes the focus of attention
rather than an extension of action

⎻The tool malfunctions or breaks, requiring counscous effort to
understand

⎻The user is unfamiliar with how to operate it

⎻The tool design is unintuitive, creating frictions that disrupt workflow

⎻The tool is an object of concern

Classification of Tools (present-at-hand)Classification of Tools

12

When Tools Disrupt the Task

⎻The operation is less intuitive and
requires reflection and understanding
how to proceed

⎻The focus is no longer on the task but
on how to operate the system

⎻As a conseguence, user must adapt
their cognitive schemata

13

The Process of Adaptation

Intellectual growth is a process of adaptation to the world

new information are classified
according to existing schemata

new information
clashes with existing
schemata, causing

discomfort

existing schemata are revised to
incorporate new information

schemata explain
what it is perceived,

the user reach a
state of cognitive

balance

Piaget, J. (1952). The Origins of Intelligence in
Children. New York: W.W. Norton & Company.

14

When Do Tools Become an Obstacle?

lack of integration
limits governance

steep learning curves
slow adoption

outdated technology
stacks limit
flexibility, and
usability

emphasis on tools
hides core modeling
principles

accidental complexity
adds complications

15

A Dirsruptive Timeline

1995

MetaEdit

SmallTalk

2003

EMF

Eclipse/Java

2009

MPS

Java

16

A Dirsruptive Timeline

20101995

MetaEdit

2003

EMF

2009

MPS

Node.js

17

A Dirsruptive Timeline

2010

Angular.js

2014

Vue.js

1995

MetaEdit

2003

EMF

2009

MPS

Node.js

2013

React
Outsourced

2015

Angular 2

18

A Dirsruptive Timeline

2010

Angular.js

2014

Vue.js

1995

MetaEdit

2003

EMF

2009

MPS

Node.js

2013

React
Outsourced

2015

Angular 2

OutSystems

Microsoft Power Apps

Salesforce Lightning

Google App Maker

FileMaker

Budibase

Appsmith

ToolJet

OpenBlocks

Quarkly

StackBlitz

Gatsby

Appery

Retool

Obsolete Technologies

Enabling Technologies

LowCode Hype

OutSystems Mendix

2016 2017 2018 2019 2020 2021

19

Component-based vs Integrated Environment

In the landscape of MDE tools, we distinguish two major
architectures

⎻Component-based systems: EMF

⎻Integrated systems: MPS, MetaEdit+, Jjodel

In addition, both EMF and MPS are open-source but with different
organizational models

20

Generative vs Reflective platforms

Two approaches

⎻In generative approaches, tools are typically created through the
following pipeline, eg EMF, MPS

Design > Generate > Compile > Deploy

⎻In reflective approaches, the platform reflects on its own
properties and adapts its behavior accordingly, eg MetaEdit+,
Jjodel

21

Current Stacks in Modeling Tools

Platform Technology Stack Year Integration Reflective Cloud/SaaS Built-in Governance UIX Awareness

MPS Legacy (Java-based) 2009 Partial Generative Limited/No Yes Basic

EMF Legacy (Eclipse) 2004 Weak Generative No No Minimal

MetaEdit
+

Legacy (Smalltalk) 1995 Strong Reflective No Yes Intermediate

jjodel Modern (Cloud-
based)

2024 Strong Reflective Yes/Yes Yes Advanced

22

From 4GL to
Low-Code

The transition from 4GL in 1980s to modern Low-
Code Development Platforms (LCDP) should be in-
depth analyzed

⎼What once miserably failed has now succeeded in a
disruptive manner, driven by socio-technical
aspects and emerging new technologies

23

Low Code Benefits

Reduced
maintenance burder

Strong
built-in governance

Lower barrier
to entry &

deployment costs

Enhanced customer
experience

Rapid prototyping

Shorter development
cycle

Improved
productivity

Software
development

democratization

24

Low Code Benefits

Reduced
maintenance burder

Strong
built-in governance

Lower barrier
to entry &

deployment costs

Enhanced customer
experience

Rapid prototyping

Shorter development
cycle

Improved
productivity

Software
development

democratization

«zero-setup»
(SaaS)

25

14 Eclipse instances
(Picture taken during STAF 2015, Wien)

26

Low Code Benefits

Reduced
maintenance burder

Strong
built-in governance

Lower barrier
to entry &

deployment costs

Enhanced customer
experience

Rapid prototyping

Shorter development
cycle

Improved
productivity

Software
development

democratization

Enhanced Usability

27

Low Code Benefits

Reduced
maintenance burder

Strong
built-in governance

Lower barrier
to entry &

deployment costs

Enhanced customer
experience

Rapid prototyping

Shorter development
cycle

Improved
productivity

Software
development

democratization

Reduced Cognitive Load

28

Low Code Benefits

Reduced
maintenance burder

Strong
built-in governance

Lower barrier
to entry &

deployment costs

Enhanced customer
experience

Rapid prototyping

Shorter development
cycle

Improved
productivity

Software
development

democratization

Integrated Environment

29

What MDE Can Learn From Low-Code

The following aspects have been identified

⎻Generic vs. specific platforms

⎻Opening up web/cloud-based platforms

⎻Counteracting vendor lock-in

⎻Managing software evolution

⎻Fostering ecosystems

Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A., Tisi, M., & Wimmer, M.
(2022). Correction to: Low-code development and model-driven engineering:

Two sides of the same coin?. Software and Systems Modeling, 21(5), 1687-
1687.

Other considerations are
missing, nothing is said

about the Technology Stack
and Software Delivery

Model (eg Saas)

30

What is Jjodel?

A modeling SaaS platform designed to make MDE more
accessible, transparent, and flexible

⎻Built around the principle of tool transparency

⎻Strengthened support for built-in governance, including co-
evolution

⎻Syntax beyond topological notations

⎻Collaborative modeling

It seeks to make MDE courses accessible to bachelor students as a
foundational approach to teaching abstraction

31

32

Positional Syntax

33
Track Plan Editor Automatically Generated from a Railways Interlocking Metamodel

34

Final Considerations

Transparency of tools is a more holistic view of software
quality (maybe ISO/IEC 25010?)

⎻tools are integrated into a broader context of purposes and
activities

⎻interaction with the tool must be intuitive and fluid, embodying a
practical engagement with the world

The tool itself is never the focus – the task is!

35

Final Considerations

Solutions should be simple

36

Final Considerations

Solutions should be simple, not simplistic—hiding
complexity to ease the user’s experience is challenging, but
essential

As academics, we often underestimate that technology is
not neutral—it shapes how we think about applications

Low-Code platforms capitalized on recent innovations

37

Jjodel Transparency

How Jjodel Implements Tool Transparency

⎻Live model validation without cognitive disruption

⎻Seamless metamodel/model co-evolution and round-tripping

⎻Adaptive modeling environments (e.g., incremental feature
disclosure, semantic zooming, topological vs. positional
notations)

⎻Streamlined modeling processes (e.g., projectional editing,
blended/hybrid modeling)

⎻Documentation

38

Transparency vs AI

Tool transparency is good

However, seamless integration of unsupervised models,
including LLMs and deep neural networks, presents risks

⎻Decision-making process without robust supervision is critical as
such models are highly complex and difficult to interpret

⎻Transparency might lead to an illusion of control

39

Can we perform better? Probably, yes!

However, building tools is little rewarding
in terms of career.

40

Can we perform better? Probably, yes!

However, building tools is little rewarding
in terms of career.

41

Who should design modeling tools?

42

Who should fund tool development?

If modeling is critical, why is sustainable
tool development often overlooked?

43

Why isn’t MDE taught at the bachelor
level, despite abstraction being

fundamental to computer science?

Is the barrier the paradigm itself, or the
complexity of the tools?

45

Transparency of Tools
Beyond Usability in Modeling Tools

Alfonso Pierantonio
alfonso.pierantonio@univaq.it

46

Feature React Angular Vue.js

Released 2013 2010 - 2016 2014

Type Library Full Framework Progressive Framework

Language JSX TypeScript JavaScript

Data Binding One-way Two-way Two-way

Learning Curve Moderate Steep Easy-Moderate

Performance High (Virtual DOM) Moderate High (Reactivity System)

47

48

49

50

	Sezione predefinita
	Slide 1: Transparency of Tools Beyond Usability in Modeling Tools
	Slide 3: Context
	Slide 4: Objective
	Slide 5
	Slide 6
	Slide 7: Philosophical Foundations
	Slide 8: Classification of Tools
	Slide 9: A Flushing System
	Slide 10: Schemata in Cognitive Psychology
	Slide 11
	Slide 12: When Tools Disrupt the Task
	Slide 13: The Process of Adaptation
	Slide 14: When Do Tools Become an Obstacle?
	Slide 15: A Dirsruptive Timeline
	Slide 16: A Dirsruptive Timeline
	Slide 17: A Dirsruptive Timeline
	Slide 18: A Dirsruptive Timeline
	Slide 19: Component-based vs Integrated Environment
	Slide 20: Generative vs Reflective platforms
	Slide 21: Current Stacks in Modeling Tools
	Slide 22: From 4GL to Low-Code
	Slide 23: Low Code Benefits
	Slide 24: Low Code Benefits
	Slide 25
	Slide 26: Low Code Benefits
	Slide 27: Low Code Benefits
	Slide 28: Low Code Benefits
	Slide 29: What MDE Can Learn From Low-Code
	Slide 30: What is Jjodel?
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Final Considerations
	Slide 35: Final Considerations
	Slide 36: Final Considerations
	Slide 37: Jjodel Transparency
	Slide 38: Transparency vs AI
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 45: Transparency of Tools Beyond Usability in Modeling Tools
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

