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> Outline

Motivation

Motivation1

• Is explainability still possible for privacy-preserving models?

1Talk based on (1) A. Bozorgpanah, V. Torra, L Aliahmadipour, Privacy and Explainability: The

Effects of Data Protection on Shapley Values, Tech. 2022; (2) V. Torra, unpublished results

Vicenç Torra; Explainability and PPML Secrypt 2024 1 / 54



Outline

Outline

1. Introduction

• A context: Data-driven ML

• Privacy for machine learning and statistics

• Privacy models and masking methods

2. Explainability

• AI and Explainability

• Shapley values

3. Experiments and analysis

• Methodology

• Analysis

4. Future directions

Secrypt 2024 2 / 54



Introduction Outline

Introduction
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Introduction > Outline

A context: Data-driven machine learning/statistical

models

• From huge databases, build the “decision maker”

◦ Use (logistic) regression, deep learning, neural networks, . . .

Machine 
Learning
Algorithm

Data

Base

(DB)

Data−driven

model

• Example: build a predictor from hospital historical data about length-

of-stay at admission
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Privacy for machine learning and statistics
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Introduction > Privacy Outline

Data is sensitive

• Who/how is going to create this model (this “decision maker”)?

• Case #1. Sharing (part of the data)

?
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Introduction > Privacy Outline

Data is sensitive

• Who/how is going to create this model (this “decision maker”)?

• Case #2. Not sharing data, only querying data

?
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Data is sensitive

• Case #1. Sharing (part of the data)

• Naive anonymization does not work2. Few attributes cause disclosure.

?

◦ Predict length-of-stay, database with only
(year-birth, town, illness/ICD-9 codes)
1967, Ume̊a, circulatory system
1957, Ume̊a, digestive system
1964, Ume̊a, congenital anomalies
1997, Ume̊a, injury and poisoning
1986, Täfte̊a, injury and poisoning
...

However:
1984, Holmöns distrikt, xxx

2Folkmängd: 62 (https://sv.wikipedia.org/wiki/Holm%C3%B6ns_distrikt)
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Model is sensitive

• Case #2. Not sharing data, only querying data, sharing the model

• Models may reveal sensitive information

?

◦ Income prediction vs. age for a town
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Vicenç Torra; Explainability and PPML Secrypt 2024 9 / 54



Introduction > Privacy Outline

Model is sensitive

• Case #2. Not sharing data, only querying data, sharing the model

• Models may reveal sensitive information

Did they use my data (without permission)??

◦ Membership inference attacks:

We add Dona Obdúlia (who is very very rich and young)
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income = 1418.63 + 0.5864 * age2 vs. income = 2774 + 0.04639 * age2
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So, then, how?
Privacy models and privacy solutions
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Data is sensitive: How to make ML possible?

• Who/how is going to create this model (this “decision maker”)?

• Case #1. Sharing (part of the data)

?

• Why data sharing?

◦ Data scientists, statisticians, and ML researchers want the data.

◦ Explore the data, apply several algorithms, test different parameters.

◦ Other approaches (DP) properly applied degrade utility too much.
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Introduction > Context Outline

Data is sensitive: How to make ML possible?

• Case #1. Sharing (part of the data)

• How ML is possible:

◦ Privacy models. Computational definitions of privacy. E.g.,

⊲ k-Anonymity (Samarati, 2001)

⊲ reidentification privacy (Dalenius, 1986)

◦ Data protection mechanisms: masking methods.

to provide files with privacy guarantees

◦ Remark. If DB′ is safe, any f(DB′) is safe.

?
X X’
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Data is sensitive: How to make ML possible?

• Case #1. Sharing (part of the data)

• Masking methods.

◦ Methods ρ to construct DB′ from DB.

◦ Some examples (used in our experiments):

⊲ Microaggregation

⊲ Noise addition

⊲ Lossy compression and other transform-based methods
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Masking methods: Microaggregation

• Microaggregation (provides k-anonymity):

◦ Group (cluster) a few (at least k) people with similar characteristics,

◦ provide safe summaries of these people.

• Implementations

◦ Different clustering / different summaries lead to different results

◦ Examples: MDAV, Mondrian, others
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Masking methods: Noise addition

• Noise addition (to avoid re-identification, LDP):

◦ replace x by x+ r

with r following an appropriate distribution

• Examples:

◦ ǫ according to Normal distribution,

zero mean, standard deviation as
√

(variance · k)

◦ ǫ according to Laplacian distribution (provides some LDP),

zero mean, standard deviation as
√

(variance · k)
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Masking methods: Lossy compression /

transform-based protection

• Compression (to avoid re-identification):

◦ Apply a transformation

◦ Select main components

◦ Undo the transformation

• Examples

◦ SVD. Singular value decomposition. Select k components.

◦ PCA. Principal components. Select k principal components.

◦ NMF. Non-negative matrix factorization. Select k components.
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Masking methods

• Masking methods cause a distortion to the data

◦ Distortion depends on the parameter selected

?
X X’
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Masking methods

• Masking methods cause a distortion to the data

◦ Distortion depends on the parameter selected

?
X X’

◦ Quite a few studies on the effects of distortion on information loss

some show that a small distortion may have no effect on IL

◦ Quite a few studies on the effects of distortion on some disclosure

risk measures (attribute disclosure, identity disclosure)
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Explainability
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Is explainability still possible for
privacy-preserving models?
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Explainability?
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AI and explainability

• European regulation (GDPR) not only supports data protection and

privacy, but also requirements on how decision making affecting people

should be done.

◦ Automated decisions should be explainable

• So, models need to be accurate, unbiased, etc. but also explainable
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AI and explainability

• Interpretable vs. explainable

◦ Interpretable model: it is about the model itself. E.g., can we

understand the model by inspection (e.g. decision trees)?

◦ Explainable model: it is about the outputs.

• So, explainability, is for all models, including black-box models.
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AI and explainability

• Explainability

◦ Model specific vs model agnostic

⊲ Model specific. When the explanation is based on the model itself

⊲ Model agnostic. The method is applicable to any kind of model.
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AI and explainability

• Explainability

◦ Model specific vs model agnostic

⊲ Model specific. When the explanation is based on the model itself

⊲ Model agnostic. The method is applicable to any kind of model.

◦ Global vs local methods

⊲ Global: Average behavior of the model. General mechanism behind

⊲ Local: Model’s individual prediction
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AI and explainability

• Local model-agnostic methods. Examples.

◦ Individual Conditional Expectation (ICE), Local Interpretable Model-

agnostic Explanations (LIME), counterfactual explanation, Scoped

Rules (Anchors), Shapley values (e.g., SHapley Additive exPlanations:

SHAP).
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AI and explainability

• Back to our questions

◦ Is explainability still possible for privacy-preserving models?

• Why this question?

◦ These methods for explainability are based on the data-driven model

◦ If the data is perturbed, is the explanation still valid?
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Explainability: Shapley values
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Explainability: Shapley values and XAI

• Local model-agnostic methods: using Shapley values

◦ a data-driven model M , applied to an example u

◦ Why do we get M(u)?

◦ Which variables contribute to M(u)? How much they contribute?
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◦ Figures. Shapley values for a record of the Diabetes data set (records

1 and 4 in the test set) computed from a model = SVM/SVR.
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Explainability: Shapley values

• Shapley values. An index from game theory.

◦ We have a set function (a game) which provides values for coalitions

A simple case, is a coalition a winning coalition?

◦ Let X be a set,

parties in coalitions

in our context the set of all variables

Vicenç Torra; Explainability and PPML Secrypt 2024 29 / 54



Explainability > Shapley Outline

Explainability: Shapley values

• Shapley values. An index from game theory.

◦ We have a set function (a game) which provides values for coalitions

A simple case, is a coalition a winning coalition?

◦ Let X be a set,

parties in coalitions

in our context the set of all variables

◦ µ(S) for S ⊂ X is the contribution of S.

is S a winning coalition, µ(S) = 1; otherwise µ(S) = 0

considering only the variables of S, not the others
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Explainability: Shapley values

• Shapley values. An index from game theory.

◦ From µ compute Shapley values φ for each x.

φx represents the power/relevance of x ∈ X.

For X = {x1, . . . , xn} we have values φx1(µ), . . . , φxn(µ).

◦ These values are computed as

φxi(µ) =
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
(µ(S ∪ {i})− µ(S)).

◦ φxi is the average contribution of i when incorporated to a set
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Explainability: Shapley values

• Shapley values. An index from game theory.

◦ From µ compute Shapley values φ for each x.

φx represents the power/relevance of x ∈ X.

For X = {x1, . . . , xn} we have values φx1(µ), . . . , φxn(µ).

◦ These values are computed as

φxi(µ) =
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
(µ(S ∪ {i})− µ(S)).

◦ φxi is the average contribution of i when incorporated to a set

Example. If xi is a required party in any winning coalition, φxi(µ) = 1.
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Explainability: Shapley values

• Shapley values. An index from game theory.

◦ From µ compute Shapley values φ for each x.

φx represents the power/relevance of x ∈ X.

For X = {x1, . . . , xn} we have values φx1(µ), . . . , φxn(µ).

◦ These values are computed as

φxi(µ) =
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
(µ(S ∪ {i})− µ(S)).

◦ φxi is the average contribution of i when incorporated to a set

Example. If xi is a required party in any winning coalition, φxi(µ) = 1.

◦ The Shapley value is the only power index that satisfies the dummy

player condition, additivity, anonymity, and efficiency conditions.
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Explainability: Shapley values

• Shapley values. A power index from game theory.

◦ Distributing µ(X) in a fair manner between the elements in X.

◦ Efficiency condition.
∑

x∈X φx = µ(X)
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Explainability > Shapley Outline

Explainability: Shapley values

• Shapley values. A power index from game theory.

◦ Distributing µ(X) in a fair manner between the elements in X.

◦ Efficiency condition.
∑

x∈X φx = µ(X)

• µ can be non-linear, and include interactions between the variables.

So, φ is linear and removes interactions.
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Explainability: Shapley in XAI

• Shapley values in explainability, main idea

◦ µ(S): Difference with mean output when only variables S are known

Example. Extreme case, nothing is known µ(∅) = 0
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Explainability: Shapley in XAI

• Shapley values in explainability, and partially undefined inputs

◦ Recall. Particular input/instance u and model M
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Explainability: Shapley in XAI

• Shapley values in explainability, and partially undefined inputs

◦ Recall. Particular input/instance u and model M

◦ Instance u with partial information for only variables S ⊂ X:

uS

where

uS
i = ui if xi ∈ S

and then, in principle, uS
i = ⊥ (undefined) if xi /∈ S.

Example. Something like uS = (u1, u2,⊥,⊥, u5,⊥, u7, u8).

Vicenç Torra; Explainability and PPML Secrypt 2024 33 / 54



Explainability > Shapley Outline

Explainability: Shapley in XAI

• Shapley values in explainability, and partially undefined inputs

◦ Recall. Particular input/instance u and model M

◦ Instance u with partial information for only variables S ⊂ X:

uS

where

uS
i = ui if xi ∈ S

and then, in principle, uS
i = ⊥ (undefined) if xi /∈ S.

Example. Something like uS = (u1, u2,⊥,⊥, u5,⊥, u7, u8).

◦ Most models are numerical and numbers are expected in inputs, then,

the mean input is often used for uS
i when xi /∈ S. Mathematically,

using X̄i to represent the mean of variable xi it is common to use

uS
i = X̄i if xi /∈ S.
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Explainability: Shapley in XAI

• Shapley values in explainability, and definition of µ

◦ Now, the game µ from M(u) is defined as

µ(S) = M(uS)−M(u∅) (1)

for all S ⊆ X.

µ({x1, x2, x5, x7, x8}) = M(u1, u2,⊥,⊥, u5,⊥, u7, u8)−M(⊥, . . . ,⊥)

◦ Note: As we substract µ(u∅) we have µ(∅) = 0. We could just use

µ(S) = M(uS), then all Shapley values are shifted by a constant.
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Explainability: Shapley in XAI

• Shapley values in explainability, from µ to φ

◦ Given M(u), we compute φx rellevance and importance for x ∈ X

◦ So, in this example,

−6 −4 −2 0 2 4 6
Y-values

bp

s3

sex

s6

bmi

age

s1

s4

s2

s5

bp

s3

sex

s6

bmi

age

s1

s4

s2

s5

−5.29

+5.01

−4.3

−3.38

−3.17

−2.99

−1.98

+1.98

−1.45

+1.44

⊲ If age = -2.99 means that (in average) adding the variable age to

any set of variables decreases the output for this instance in 2.99.

⊲ M(u) = µ(X) +M(u∅) =
∑

x φx(µ) +M(u∅)
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Experiments and analysis
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Explainability

• Back to our questions

◦ Is explainability still possible for privacy-preserving models?

• Evaluation

◦ How data protection affect Shapley values?
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Methodology
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Explainability

• How data protection affect Shapley values?

• Comparison of Shapley values

◦ Local vs global: One or a set of Shapley values

⊲ Individual comparison of Shapley values

⊲ Comparison of mean Shapley values for a set of instances u

(test set, global importance)

◦ Shapley values or ranks of variables

⊲ Compare numerical values (Shapley values themselves)

⊲ Compare ranking of variables: Spearman’s rank correlation

• So, 4 comparisons
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Explainability

• Local vs global: One or a set of Shapley values (test set Xte):

Case: rank correlation CORR.

◦ Individual comparison of Shapley values (and their mean)

∑

x∈Xte Corr(φML0(x), φMLρp
(x))

|Xte|
,

◦ Comparison of mean Shapley values for a set of instances u

Corr(φ̄ML0,X
te, φ̄MLρp,X

te).

where
⊲ φ̄ML0,X

te =
∑

x∈Xte φML0
(x)

|Xte|

⊲ φ̄MLρp,X
te =

∑
x∈ρp(X)te φMLρp

(x)

|Xte|
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Methodology

Masking methods ρ with parameters pρ.

• Split the data set X in training Xtr and testing Xte

• MLo := A(Xtr), the ML model built from original data

• For each x ∈ Xte, define game µMLo,x.

Compute Shapley values φMLo(x).

Compute the mean Shapley value of Xte: φ̄MLo,Xte.
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Experiments > Methodology for Shapley values Outline

Methodology

Masking methods ρ with parameters pρ.

• Split the data set X in training Xtr and testing Xte

• MLo := A(Xtr), the ML model built from original data

• For each x ∈ Xte, define game µMLo,x.

Compute Shapley values φMLo(x).

Compute the mean Shapley value of Xte: φ̄MLo,Xte.

• Xρp := ρp(X
tr) (protected versions using ρ and pρ)

• MLρp := A(Xρp), the ML model built from Xρp

• For each x ∈ Xte, define game µMLρp,x

Compute Shapley values φMLρp
(x)

Compute the mean Shapley value of Xte: φ̄MLρp,X
te.
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Methodology

Masking methods ρ with parameters pρ.

• Split the data set X in training Xtr and testing Xte

• MLo := A(Xtr), the ML model built from original data

• For each x ∈ Xte, define game µMLo,x.

Compute Shapley values φMLo(x).

Compute the mean Shapley value of Xte: φ̄MLo,Xte.

• Xρp := ρp(X
tr) (protected versions using ρ and pρ)

• MLρp := A(Xρp), the ML model built from Xρp

• For each x ∈ Xte, define game µMLρp,x

Compute Shapley values φMLρp
(x)

Compute the mean Shapley value of Xte: φ̄MLρp,X
te.

• Compare the Shapley values (four comparisons)
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Methodology

Methodology

• Data sets: Tarragona (834x12+1), Diabetes (442x10+1), Iris (150x4+1),

Cervical cancer (858x35+1), Breast cancer (116x9+1)
• ML algorithms (python sklearn):

◦ linear model.LinearRegression (linear regression),
◦ sklearn.linear model.SGDRegressor (linear model implemented with
stochastic gradient descent),

◦ sklearn.kernel ridge.KernelRidge (linear least squares with l2-norm
regularization, with the kernel trick),

◦ sklearn.svm.SVR (Epsilon-Support Vector Regression).

• Masking methods

◦ Microaggregation (MDAV, Mondrian)

◦ Noise addition (Gaussian, Laplacian)

◦ Lossy compression/transform-based methods (SVD, PCA, NMF)

• Explainability (own implementation + SHAP for num. vars > 10)
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Analysis
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Analysis (I)

• Distances can be very large, comparisons cumbersome.

◦ The game, defined for ML is unbounded (arbitrarily large)

◦ Small changes on the model affect the game.
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dm: mean Shapley values, md: mean distance of Shapley values. d: mdav,

o:mondrian. Linear regression. DB: 11 and 12 inputs (left, middle)
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Analysis (II)

• In contrast, rank correlation is always in [-1,1].

◦ Larger distances do not mean larger rank correlation. Large distances

between Shapley values do not imply changes in values order.

◦ Mondrian give larger distances than MDAV, but MDAV shows a worse

performance as Mondrian has a rank correlation near to 1 for larger

parameters.
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dm: mean Shapley values, md: mean distance of Shapley values, Rm: Rank

correlation of mean Shapley values, mR: mean correlation of Shapley values. d:

mdav, o:mondrian. Linear regression.
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Analysis (III)

• For rank correlation, similar tendency results independent of ML.

Mean rank correlation for MDAV and Mondrian
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Analysis (IVa)

• Seems, microaggregation leads to better results than noise addition.

◦ Linear regression. d: MDAV, o: Mondrian, g: Gaussian, l: Laplace
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Analysis (IVb)

• SVM-regression. d: MDAV, o: Mondrian, g: Gaussian, l: Laplace
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Analysis (IVa)

• Seems, microaggregation leads to better results than noise addition.

◦ This is also supported by privacy protection level.
◦ For k = 1.5, from ǫ-LDP-perspective we have ǫ values of

⊲ Breast cancer: ǫ = (4.56, 1.48, 10.38, 2.90, 1.48, 6.26,
2.68, 3.71, 121.77)

⊲ Iris: ǫ = (4.94, 3.02, 8.10, 3.29)
◦ For k = 15

⊲ Iris: ǫ = (1.56, 0.95, 2.56, 1.04)
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Analysis (V)

• Summary.

◦ Protection does not prevent explainability (Shapley values).

Not incompatible

◦ Results based on rank correlation have a sounder behavior

change more smoothly w.r.t. protection, similar behavior for diff. ML

◦ Among the four machine learning models, the linear model is the one

that has the worst performance with respect to the Shapley value.

◦ Microaggregation (k-anonymity) seems better
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Future Directions
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Work in progress

• Research directions related to Shapley values

◦ Games are set functions, and information on the model is rich

e.g. interactions

◦ Shapley values are just summaries

◦ We need to further exploit the game
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Work in progress

• Exploiting the game3

◦ Interactions. E.g., I(age, sex)? (interaction index)

◦ Other indices. E.g., Υ-values4

◦ Not all coalitions are possible. E.g., either we know both variables

x1 and x2, or we know none.

◦ The game itself. µ(S) = M(uS)−M(u∅)

3V. Torra, Games, fuzzy measures, indices, and explainable ML: exploiting the game, INFUS 2024
4V. Torra (2024) Υ-values: power indices Ã? la orness for non-additive measures, IEEETFS.
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Thank you
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