Secrypt 2024

Explainability and privacy-preserving data-driven models

Vicenç Torra

July, 2024

Dept. CS, Umeå University, Sweden

$\mathsf{Motivation}^1$

>

• Is explainability still possible for privacy-preserving models?

¹Talk based on (1) A. Bozorgpanah, V. Torra, L Aliahmadipour, Privacy and Explainability: The Effects of Data Protection on Shapley Values, Tech. 2022; (2) V. Torra, unpublished results

1. Introduction

- A context: Data-driven ML
- Privacy for machine learning and statistics
- Privacy models and masking methods
- 2. Explainability
 - AI and Explainability
 - Shapley values
- 3. Experiments and analysis
 - Methodology
 - Analysis
- 4. Future directions

Introduction

A context: Data-driven machine learning/statistical models

- From huge databases, build the "decision maker"
 - Use (logistic) regression, deep learning, neural networks, . . .

• Example: build a predictor from hospital historical data about lengthof-stay at admission

Privacy for machine learning and statistics

Data is sensitive

- Who/how is going to create this model (this "decision maker")?
- Case #1. Sharing (part of the data)

Data is sensitive

- Who/how is going to create this model (this "decision maker")?
- Case #2. Not sharing data, only querying data

- Case #1. Sharing (part of the data)
- Naive anonymization does not work². Few attributes cause disclosure.

 Predict length-of-stay, database with only (year-birth, town, illness/ICD-9 codes)
 1967, Umeå, circulatory system
 1957, Umeå, digestive system
 1964, Umeå, congenital anomalies
 1997, Umeå, injury and poisoning
 1986, Täfteå, injury and poisoning

However: 1984, Holmöns distrikt, xxx

²Folkmängd: 62 (https://sv.wikipedia.org/wiki/Holm%C3%B6ns_distrikt)

Model is sensitive

- Case #2. Not sharing data, only querying data, sharing the model
- Models may reveal sensitive information

 Income prediction vs. age for a town

- Case #2. Not sharing data, only querying data, sharing the model
- Models may reveal sensitive information
 Did they use my data (without permission)??
 - Membership inference attacks:
 We add Dona Obdúlia (who is very very rich and young)

So, then, how? Privacy models and privacy solutions

- Who/how is going to create this model (this "decision maker")?
- Case #1. Sharing (part of the data)

- Why data sharing?
 - Data scientists, statisticians, and ML researchers want the data.
 - Explore the data, apply several algorithms, test different parameters.
 - Other approaches (DP) properly applied degrade utility too much.

- Case #1. Sharing (part of the data)
- How ML is possible:
 - Privacy models. Computational definitions of privacy. E.g.,
 > k-Anonymity (Samarati, 2001)
 - ▷ reidentification privacy (Dalenius, 1986)
 - Data protection mechanisms: masking methods. to provide files with privacy guarantees
 - \circ Remark. If DB' is safe, any f(DB') is safe.

Data is sensitive: How to make ML possible?

- Case #1. Sharing (part of the data)
- Masking methods.
 - \circ Methods ρ to construct DB' from DB.
 - Some examples (used in our experiments):
 - ▷ Microaggregation
 - ▷ Noise addition
 - Lossy compression and other transform-based methods

Masking methods: Microaggregation

- Microaggregation (provides *k*-anonymity):
 - Group (cluster) a few (at least k) people with similar characteristics,
 provide safe summaries of these people.
- Implementations
 - Different clustering / different summaries lead to different results
 - Examples: MDAV, Mondrian, others

Masking methods: Noise addition

- Noise addition (to avoid re-identification, LDP):
 - replace x by x + rwith r following an *appropriate distribution*
- Examples:
 - ϵ according to Normal distribution,
 zero mean, standard deviation as √(variance · k))

 ϵ according to Laplacian distribution (provides some LDP),
 zero mean, standard deviation as √(variance · k))

Masking methods: Lossy compression / transform-based protection

- Compression (to avoid re-identification):
 - Apply a transformation
 - \circ Select *main* components
 - Undo the transformation
- Examples
 - $\circ\,$ SVD. Singular value decomposition. Select k components.
 - \circ PCA. Principal components. Select k principal components.
 - $\circ\,$ NMF. Non-negative matrix factorization. Select k components.

- Masking methods cause a distortion to the data
 - $\circ\,$ Distortion depends on the parameter selected

- Masking methods cause a distortion to the data
 - $\circ\,$ Distortion depends on the parameter selected

 Quite a few studies on the effects of distortion on some disclosure risk measures (attribute disclosure, identity disclosure)

Explainability

Is explainability still possible for privacy-preserving models?

Explainability?

- European regulation (GDPR) not only supports data protection and privacy, but also requirements on how decision making affecting people should be done.
 - Automated decisions should be explainable
- So, models need to be accurate, unbiased, etc. but also explainable

- Interpretable vs. explainable
 - Interpretable model: it is about the model itself. E.g., can we understand the model by inspection (e.g. decision trees)?
 - Explainable model: it is about the outputs.
- So, explainability, is for all models, including black-box models.

• Explainability

- Model specific vs model agnostic
 - ▷ Model specific. When the explanation is based on the model itself
 - ▷ Model agnostic. The method is applicable to any kind of model.

- Explainability
 - Model specific vs model agnostic
 - ▷ Model specific. When the explanation is based on the model itself
 - ▷ Model agnostic. The method is applicable to any kind of model.
 - Global vs local methods
 - ▷ Global: Average behavior of the model. General mechanism behind
 - ▷ Local: Model's individual prediction

- Local model-agnostic methods. Examples.
 - Individual Conditional Expectation (ICE), Local Interpretable Modelagnostic Explanations (LIME), counterfactual explanation, Scoped Rules (Anchors), Shapley values (e.g., SHapley Additive exPlanations: SHAP).

- Back to our questions
 - Is explainability still possible for privacy-preserving models?
- Why this question?
 - These methods for explainability are based on the data-driven model
 - If the data is perturbed, is the explanation still valid?

Explainability: Shapley values

- Local model-agnostic methods: using Shapley values
 - \circ a data-driven model M, applied to an example u
 - \circ Why do we get M(u)?
 - \circ Which variables contribute to M(u)? How much they contribute?

 \circ Figures. Shapley values for a record of the Diabetes data set (records 1 and 4 in the test set) computed from a model = SVM/SVR.

Explainability: Shapley values

- Shapley values. An index from game theory.
 - We have a set function (a game) which provides values for coalitions
 A simple case, is a coalition a winning coalition?
 - $\circ \mbox{ Let } X$ be a set,
 - parties in coalitions
 - in our context the set of all variables

Explainability: Shapley values

- Shapley values. An index from game theory.
 - We have a set function (a game) which provides values for coalitions
 A simple case, is a coalition a winning coalition?
 - \circ Let X be a set,
 - parties in coalitions

in our context the set of all variables

 $\circ \ \mu(S)$ for $S \subset X$ is the contribution of S.

is S a winning coalition, $\mu(S) = 1$; otherwise $\mu(S) = 0$ considering only the variables of S, not the others

- Shapley values. An index from game theory.
 - From µ compute Shapley values φ for each x.
 φ_x represents the power/relevance of x ∈ X.
 For X = {x₁,...,x_n} we have values φ_{x1}(µ),...,φ_{xn}(µ).
 These values are computed as

$$\phi_{x_i}(\mu) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (n - |S| - 1)!}{n!} (\mu(S \cup \{i\}) - \mu(S)).$$

 $\circ \phi_{x_i}$ is the average contribution of *i* when incorporated to a set

- Shapley values. An index from game theory.
 - From µ compute Shapley values φ for each x.
 φ_x represents the power/relevance of x ∈ X.
 For X = {x₁,...,x_n} we have values φ_{x₁}(µ),...,φ_{x_n}(µ).
 These values are computed as
 - $\phi_{x_i}(\mu) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (n |S| 1)!}{n!} (\mu(S \cup \{i\}) \mu(S)).$
 - ϕ_{x_i} is the average contribution of *i* when incorporated to a set Example. If x_i is a required party in any winning coalition, $\phi_{x_i}(\mu) = 1$.

- Shapley values. An index from game theory.
 - From µ compute Shapley values φ for each x.
 φ_x represents the power/relevance of x ∈ X.
 For X = {x₁,...,x_n} we have values φ_{x₁}(µ),...,φ_{x_n}(µ).
 These values are computed as

$$\phi_{x_i}(\mu) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (n - |S| - 1)!}{n!} (\mu(S \cup \{i\}) - \mu(S)).$$

- ϕ_{x_i} is the average contribution of i when incorporated to a set Example. If x_i is a required party in any winning coalition, $\phi_{x_i}(\mu) = 1$.
- The Shapley value is the only power index that satisfies the dummy player condition, additivity, anonymity, and efficiency conditions.

Explainability: Shapley values

- Shapley values. A power index from game theory.
 - \circ Distributing $\mu(X)$ in a fair manner between the elements in X.
 - \circ Efficiency condition. $\sum_{x\in X}\phi_x=\mu(X)$

Explainability: Shapley values

- Shapley values. A power index from game theory.
 - Distributing μ(X) in a fair manner between the elements in X.
 Efficiency condition. ∑_{x∈X} φ_x = μ(X)
- μ can be non-linear, and include interactions between the variables. So, ϕ is linear and removes interactions.

- Shapley values in explainability, main idea
 - $\circ~\mu(S)$: Difference with mean output when only variables S are known

Example. Extreme case, nothing is known $\mu(\emptyset) = 0$

- Shapley values in explainability, and partially undefined inputs
 - \circ Recall. Particular input/instance u and model M

- Shapley values in explainability, and partially undefined inputs
 - $\circ\,$ Recall. Particular input/instance u and model M
 - \circ Instance u with partial information for only variables $S \subset X$: u^S

where

 $u_i^S = u_i \text{ if } x_i \in S$ and then, in principle, $u_i^S = \bot$ (undefined) if $x_i \notin S$. Example. Something like $u^S = (u_1, u_2, \bot, \bot, u_5, \bot, u_7, u_8)$.

- Shapley values in explainability, and partially undefined inputs
 - $\circ\,$ Recall. Particular input/instance u and model M
 - Instance u with partial information for only variables $S \subset X$: u^S

where

 $u_i^S = u_i \text{ if } x_i \in S$ and then, in principle, $u_i^S = \bot$ (undefined) if $x_i \notin S$. Example. Something like $u^S = (u_1, u_2, \bot, \bot, u_5, \bot, u_7, u_8)$.

• Most models are numerical and numbers are expected in inputs, then, the mean input is often used for u_i^S when $x_i \notin S$. Mathematically, using \bar{X}_i to represent the mean of variable x_i it is common to use

$$u_i^S = \bar{X}_i$$
 if $x_i \notin S$.

- Shapley values in explainability, and definition of μ
 - \circ Now, the game μ from M(u) is defined as

$$\mu(S) = M(u^S) - M(u^{\emptyset}) \tag{1}$$

for all $S \subseteq X$. $\mu(\{x_1, x_2, x_5, x_7, x_8\}) = M(u_1, u_2, \bot, \bot, u_5, \bot, u_7, u_8) - M(\bot, ..., \bot)$ \circ Note: As we substract $\mu(u^{\emptyset})$ we have $\mu(\emptyset) = 0$. We could just use $\mu(S) = M(u^S)$, then all Shapley values are shifted by a constant.

- Shapley values in explainability, from μ to ϕ
 - Given M(u), we compute ϕ_x rellevance and importance for $x \in X$ • So, in this example,

▷ If age = -2.99 means that (in average) adding the variable age to any set of variables decreases the output for this instance in 2.99. ▷ $M(u) = \mu(X) + M(u^{\emptyset}) = \sum_{x} \phi_{x}(\mu) + M(u^{\emptyset})$

Experiments and analysis

Explainability

- Back to our questions
 - Is explainability still possible for privacy-preserving models?
- Evaluation
 - How data protection affect Shapley values?

Methodology

- How data protection affect Shapley values?
- Comparison of Shapley values
 - Local vs global: One or a set of Shapley values
 - Individual comparison of Shapley values
 - Comparison of mean Shapley values for a set of instances u (test set, global importance)
 - Shapley values or ranks of variables
 - ▷ Compare numerical values (Shapley values themselves)
 - Compare ranking of variables: Spearman's rank correlation
- So, 4 comparisons

- Local vs global: One or a set of Shapley values (test set X^{te}): Case: rank correlation CORR.
 - Individual comparison of Shapley values (and their mean)

$$\frac{\sum_{x \in X^{te}} Corr(\phi_{ML_0}(x), \phi_{ML_{\rho_p}}(x))}{|X^{te}|},$$

 $\circ\,$ Comparison of mean Shapley values for a set of instances u

$$Corr(\bar{\phi}_{ML_0,X^{te}},\bar{\phi}_{ML_{\rho_p},X^{te}}).$$

where $\bar{\phi}_{ML_0,X^{te}} = \frac{\sum_{x \in X^{te}} \phi_{ML_0}(x)}{|X^{te}|}$ $\bar{\phi}_{ML_{\rho_p},X^{te}} = \frac{\sum_{x \in \rho_p(X)^{te}} \phi_{ML_{\rho_p}}(x)}{|X^{te}|}$ Masking methods ρ with parameters p_{ρ} .

- Split the data set X in training X^{tr} and testing X^{te}
- $ML_o := A(X^{tr})$, the ML model built from original data
- For each $x \in X^{te}$, define game $\mu_{ML_o,x}$.

Compute Shapley values $\phi_{ML_o}(x)$.

Compute the mean Shapley value of X^{te} : $\bar{\phi}_{ML_o,X^{te}}$.

Masking methods ρ with parameters p_{ρ} .

- Split the data set X in training X^{tr} and testing X^{te}
- $ML_o := A(X^{tr})$, the ML model built from original data
- For each $x \in X^{te}$, define game $\mu_{ML_o,x}$.

Compute Shapley values $\phi_{ML_o}(x)$.

Compute the mean Shapley value of X^{te} : $\overline{\phi}_{ML_o,X^{te}}$.

- $X_{\rho_p} := \rho_p(X^{tr})$ (protected versions using ρ and p_{ρ})
- $ML_{\rho_p} := A(X_{\rho_p})$, the ML model built from X_{ρ_p}
- For each $x \in X^{te}$, define game $\mu_{ML_{\rho_p},x}$ Compute Shapley values $\phi_{ML_{\rho_p}}(x)$

Compute the mean Shapley value of X^{te} : $\bar{\phi}_{ML_{\rho_p},X^{te}}$.

Masking methods ρ with parameters p_{ρ} .

- Split the data set X in training X^{tr} and testing X^{te}
- $ML_o := A(X^{tr})$, the ML model built from original data
- For each $x \in X^{te}$, define game $\mu_{ML_o,x}$.

Compute Shapley values $\phi_{ML_o}(x)$.

Compute the mean Shapley value of X^{te} : $\overline{\phi}_{ML_o,X^{te}}$.

- $X_{\rho_p} := \rho_p(X^{tr})$ (protected versions using ρ and p_{ρ})
- $ML_{\rho_p} := A(X_{\rho_p})$, the ML model built from X_{ρ_p}
- For each $x \in X^{te}$, define game $\mu_{ML_{\rho_p},x}$ Compute Shapley values $\phi_{ML_{\rho_p}}(x)$ Compute the mean Shapley value of X^{te} : $\bar{\phi}_{ML_{\rho_p},X^{te}}$.
- Compare the Shapley values (four comparisons)

Methodology

• Data sets: Tarragona (834×12+1), Diabetes (442×10+1), Iris (150×4+1),

Cervical cancer (858×35+1), Breast cancer (116×9+1)

- ML algorithms (python sklearn):
 - o linear_model.LinearRegression (linear regression),
 - sklearn.linear_model.SGDRegressor (linear model implemented with stochastic gradient descent),
 - o sklearn.kernel_ridge.KernelRidge (linear least squares with l2-norm regularization, with the kernel trick),
 - sklearn.svm.SVR (Epsilon-Support Vector Regression).
- Masking methods
 - Microaggregation (MDAV, Mondrian)
 - Noise addition (Gaussian, Laplacian)
 - Lossy compression/transform-based methods (SVD, PCA, NMF)
- Explainability (own implementation + SHAP for num. vars > 10)

Analysis

Analysis (I)

- Distances can be very large, comparisons cumbersome.
 - The game, defined for ML is unbounded (arbitrarily large)
 Small changes on the model affect the game.

_dm: mean Shapley values, _md: mean distance of Shapley values. d: mdav, o:mondrian. Linear regression. DB: 11 and 12 inputs (left, middle)

- In contrast, rank correlation is always in [-1,1].
 - Larger distances do not mean larger rank correlation. Large distances between Shapley values do not imply changes in values order.
 - Mondrian give larger distances than MDAV, but MDAV shows a worse performance as Mondrian has a rank correlation near to 1 for larger parameters.

_dm: mean Shapley values, _md: mean distance of Shapley values, _Rm: Rank correlation of mean Shapley values, _mR: mean correlation of Shapley values. d: mdav, o:mondrian. Linear regression.

Analysis (III)

• For rank correlation, similar tendency results independent of ML. Mean rank correlation for MDAV and Mondrian

Analysis (IVa)

- Seems, microaggregation leads to better results than noise addition.
 - \circ Linear regression. d: MDAV, o: Mondrian, g: Gaussian, l: Laplace

Analysis (IVb)

• SVM-regression. d: MDAV, o: Mondrian, g: Gaussian, l: Laplace

- Seems, microaggregation leads to better results than noise addition.
 - This is also supported by privacy protection level.
 For k = 1.5, from \(\epsilon LDP-perspective we have \(\epsilon values of b)\) Breast cancer: \(\epsilon = (4.56, 1.48, 10.38, 2.90, 1.48, 6.26, 2.68, 3.71, 121.77)\)
 ▷ Iris: \(\epsilon = (4.94, 3.02, 8.10, 3.29)\)
 For k = 15 ▷ Iris: \(\epsilon = (1.56, 0.95, 2.56, 1.04)\)

Analysis (V)

• Summary.

- Protection does not prevent explainability (Shapley values).
 Not incompatible
- Results based on rank correlation have a sounder behavior change more smoothly w.r.t. protection, similar behavior for diff. ML
- Among the four machine learning models, the linear model is the one that has the worst performance with respect to the Shapley value.
- \circ Microaggregation (k-anonymity) seems better

Future Directions

- Research directions related to Shapley values
 - Games are set functions, and information on the model is rich e.g. interactions
 - Shapley values are just summaries
 - We need to further exploit the game

- Exploiting the game³
 - Interactions. E.g., *I(age, sex)*? (interaction index)
 - \circ Other indices. E.g., $\Upsilon\text{-values}^4$
 - \circ Not all coalitions are possible. E.g., either we know both variables x_1 and x_2 , or we know none.
 - \circ The game itself. $\mu(S) = M(u^S) M(u^{\emptyset})$

 $^{^{3}}$ V. Torra, Games, fuzzy measures, indices, and explainable ML: exploiting the game, INFUS 2024 4 V. Torra (2024) Υ -values: power indices \tilde{A} ? la orness for non-additive measures, IEEETFS.

Thank you