

Artificial Intelligence for Biometrics

Vincenzo Piuri Università degli Studi di Milano vincenzo.piuri@unimi.it https://piuri.di.unimi.it

SECRYPT 2024 – Dijon, France – 8-10.7.2024

Biometrics

Biometrics is defined by the International Organization for Standardization (ISO) as:

"the <u>automated</u> recognition of individuals based on their <u>behavioral</u> and <u>biological</u> characteristics"

Verification vs Identification

Verification (Autenthication): Am I who I say to be? one-to-one (1:1) operation

Identification: Who am I?

one-to-many (1:N) operation

- STANDARD IDENTIFICATION: finds 1 result (best candidate)
- SCREENING: finds k possible results (candidates)

N times longer! Error increases! (w.r.t. Verification)

Behavior Recognition for Security

Motion

• Gesture

• Emotion

Biometric Applications

Physical Access Control

- Critical areas
- Restricted areas
- Private areas
- Public buildings
- Sports arenas
- Bank caveau
- Transportations

Government Applications

- Identity card, passport
- Electoral cards, driver license
- Healthcare card
- Automated Border Control
- Police identification

Surveillance

- Buildings
- Public areas
- ...

Logical Access Control to Services

- Home banking, ATM
- Credit cards
- Supermarkets
- E-commerce
- Cellular phones
- Computers
- Data

Smart Environments

- Smart home/building
- Smart entertainment systems
- Smart cars/transportation
- Intelligent traffic management
- Smart shops
- Information kiosks and augmented reality

Personalized Interactions

- Social networks face recognition for automated tagging
- Virtual assistants voice recognition for personalized speech recognition
- e-commerce systems emotion recognition for personalized interaction

Biometric Systems Operation

Enrollment

Biometric trait \rightarrow Template \rightarrow DataBase

Verification (Autentication)

Identification

Impostor and Genuine Recognition

Biometric Systems and AI: Research Directions

Artificial Intelligence: Research Directions (1)

Artificial Intelligence: Research Directions (2)

Quality Assessment

Quality = 0.93

Quality = 0.35

Quality = 0.19

Artificial Intelligence: Research Directions (3)

Antispoofing

- Example: Synaptics PurePrint[™] anti-spoof technology
- Examines fingerprint images using a NN to distinguish between fake and actual fingers

Spoof(I) [0, 1] ?

USB Dongle with fingerprint reader

Artificial Intelligence: Research Directions (4)

AI & Machine Learning Methods for Biometrics

ML Tasks Broad Categories	Supervised	Almost	Unsupervise	ed User Partitions,
	Classification	everything	Clustering	Data Understanding
Discrete	Computer vision Image Classification Speech, handwriting recognition Drug discovery		K-means, mean-shift Large-scale clustering problem Hierarchical clustering, GMM	
Regression Reduction of Dim		f Dimensionality		
Continuous	Computer vision Object Detection Linear, logistic regression		PCA, LDA (Kernel) Density Estimation	
	Age Soft Qua	Estimation, Biometrics, lity Assessment		General Data Understanding, Input processing

Artificial Intelligence: Research Directions (5)

Deep Learning for Biometrics

Artificial Intelligence: Research Directions (6)

Transfer Learning

Target task /

domain

Model

Artificial Intelligence: Research Directions (7)

Al for Data Augmentation

Landmark perturbation for face alignment.

Flipping patches (clipping) color casting blurring

Artificial Intelligence: Research Directions (8)

AI for Recognition Robustness

Generative Adversarial Networks

Artificial Intelligence: Research Directions (9)

Al for Identity Concealing Detection

Human Beings are Multimodal

While waiting for your friend Laura, someone runs towards you and greeting you

The brain performs
a multimodal matching

Multibiometrics

Data gathering

- Multiple sensors
- Multiple traits (multimodal)
- Multiple instances
- Multiple samples
- Multiple matchers

Fusion logics

- Sensor level
- Feature set level
- Matching score level
- Decision level

Voice, Face		
Voice, Lip Movement		
Voice, Face, Lip Movement		
Fingerprint, Face		
Fingerprint, Face, Voice		
Fingerprint, Face, Hand geometry		
Fingerprint, Voice, Hand geometry		
Fingerprint, Hand geometry		
Facial thermogram, Face		
Iris, Face		
Palmprint, Hand geometry		
Ear, Voice		

Multibiometrics: Research Directions

- New biometric modalities
- New sensors
- More advanced fusion techniques
- Application to mobile devices
- Advanced surveillance and behavior detection
- New antispoofing methods
- Al for multibiometrics

Continuous / Periodic Authentication: Research Directions

- Keystroke dynamics, mouse movements
- Face, iris
- Gesture
- Voice
- Gait for mobile devices
- Research directions:
 - user-friendly biometrics
 - soft biometrics
 - behavior prediction
 - IoT integration
 - Al for continuous/periodic authentication

• ...

Deepfake: Research Directions

- Digital manipulation of biometric traits by means of generative techniques
- Create fake biometrics
- Fake photos and video are used for fake news
- AI for detecting deepfake

Distributed Biometric Systems: Research Directions

- Distributed search
- Distributed match
- Interoperability
- Trustability
- Applications in ambient intelligence
- Applications in social networks
- Applications in Industry 4.0
- Analysis by artificial intelligence approaches

Biometric Privacy: Research Directions (1)

- Control over-use and disclosure of personal identity and information
- Biometric personal identity must be protected
- Biometric traits cannot be replaced
- Use of stolen biometric traits
 - Access to personal information
 - Impersonation
 - Misuse
 - Proscription lists

33

... using cards and documents

Biometric Privacy: Research Directions (2)

Biometric Privacy Protection: Attack Points

- 1. Fake biometrics
- 2. Replay attack
- 3. Override (Trojan Horse)
- 4. Tamper with features

- 5. Modify match score
- 6. Tamper with Templates DB
- 7. Intercept and Modify
- 8. Override the final decision

Biometric Privacy: Research Directions (3)

Biometric Privacy Protection: Techniques

Techniques

- Key-generating, Key-binding, Biometric encryption
- Feature Transformation, Helper Data Approach
- Fuzzy Commitment, Fuzzy Vault, Fuzzy Extractor
- Secure Sketch, Bio-Hashing, Revocable Bio-Token, Biotope
- Bio-Encryptor , ...

Research Directions

- Advanced non-invertible transformations
- Cancellable / revokable biometrics
- Advanced homomorphic encryption for processing in the encrypted domain
- Al for processing in encrypted domain
- Anonymization
- Decentralized biometric cryptosystems, ...

Transform

Enrollment

Secure

Enrollment

Biometric Privacy: Research Directions (4)

Image and Video Anonymization Personally Identifiable Information can be removed by advanced computer vision, AI and deep learning, while preserving key biometric attributes

Biometric Privacy: Research Directions (5)

Social Networks

Sentiment analysis and personal sensible information can be extracted by analyzing and correlating data available in social networks

Biometric Privacy: Research Directions (6)

Personalized Interactions

- Social networks
- Sentiment analysis
- Virtual assistants
- e-commerce systems
- Market analysis
- Al-based approaches

Biometric Traits and AI: Research Directions

Fingerprint Recognition Methods

Capture methods

- Optical live-scan
- Solid-state live-scan
- Ultrasound live-scan

Matching algorithms

- Level 1: global ridge flow
- Level 2: minutiae points
- Level 3: fine details such as skin pores and inter-ridge information

Fingerprint Recognition: Research Directions (1)

Current performance FNMR=0.001 at FMR=0.001

Current and future research areas

- Less-constrained acquisition
- High displacement/rotation
- Non-linear distortion
- Bad skin condition
- Feature extraction errors
- Matching millions of samples
- Exploiting extended features
- Robust orientation modeling
- Automated latent processing
- Learning based methods
- Template protection
- AI-based techniques

Non-linear distortion

Bad skin condition

Template protection by applying gaussian transformation

Fingerprint Recognition: Research Directions (2)

Contactless Fingerprint

Advantages

- Less-constrained
- No distortions due to pressure on sensor
- More robust to dust and dirt
- Higher user acceptance
- Use in mobile devices with standard cameras Challenges Acquisition
- Partially compatible with AFIS
- Complex background
- Sensible to lighting
- Sensible to position
- 2D systems can show distortions
- 3D systems
- Structured light
- Longer computational time

Face Recognition Methods

- Local or feature-based approaches Process the input image to identify and extract distinctive facial features such as the eyes, mouth, nose
- Holistic approaches

Consider the whole face region for the recognition

• Hybrid approaches

Comparable to the human visual perception

Face Recognition: Research Directions (1)

Current performance FNMR=0.003 @ FMR=0.001 outperform humans

Current and future research areas

- Less-constrained acquisition
- Face marks
- Periocular
- Age invariance
- Face at a distance
- Face individuality
- IR face recognition
- Sketch recognition
- AI-based techniques

Face Recognition: Research Directions (2)

On-the-move Face

Advantages

- Less constrained
- More usability
- Increased user acceptability

Challenges

- Variability in face position
- Occlusions
- Distorsions

Iris Recognition Methods

Iris acquisition

- Near infrared illumination
- Natural light
- Iris segmentation
- Iris coding and matching
 - Daugman method
 - "Eigen-Iris" approaches
 - Texture filters
 - Texture analysis
 - Analyze the iris in parts

Iris Recognition: Research Directions (1)

Current performance FNMR=0.07 @ FMR=0.0001

Current and future research areas

- Less constrained acquisition
- Improved segmentation
- Cancelable iris code
- Deal with pupil dilation
- Prediction of subject characteristics
- 3D retina representation
- AI-based techniques

Iris Recognition: Research Directions (2)

On-the-move Iris

Advantages

- Less constrained
- More usability
- Increased user acceptability

Challenges

- Variability in iris position
- Variability in eye position
- Occlusions
- Blur and out-of-focus

Biometrics and AI: Regulations and Research Directions

Biometric Privacy: Regulations

- European Union: General Data Protection Regulation (GDPR)
 - biometric data: special category of personal data
 - prohibit processing and storage by third parties without consent
 - prohibit processing for uniquely identifying a natural person, with exceptions (given consent, controller's obligations, other laws, individual's vital interests, critical in legal claims, public health)
 - clear scope and capabilities of the system
 - ⁻ ensure user control of personal data: right to be forgotten
 - ⁻ disclosure and accountability: data breach must be notified within 72 hours
 - ⁻ auditing
 - privacy by design and by default
- U.K.: UK GDPR regulation compliant with GDPR
- California: California Consumer Privacy Act (CCPA) and California Privacy Rights Act (CPRA)
- New York and Virginia follow California
- China: Personal Information Protection Law (PIPL)
- U.S.A. at federal level and India are considering regulations

AI: Regulations (1)

- European Union: EU AI Act
 - Unacceptable risk
 - Cognitive behavioral manipulation of people or specific vulnerable groups, social scoring, biometric identification and categorization of people, real-time and remote biometric identification systems (exceptions may be allowed for law enforcement purposes)
 - High risk
 - All systems that negatively affect safety, All systems that negatively affect fundamental rights.
 - Transparency requirements
 - Disclosing that the content was generated by AI, designing the model to prevent it from generating illegal content, publishing summaries of copyrighted data used for training
 - Supporting innovation
- USA: sector-specific AI-related agencies and organizations (e.g., Federal Trade Commission, National Highway Traffic Safety Administration, CCPA) address specific challenges.
- China: Chinese Cybersecurity Law and New Generation AI Development Plan provide measures for data protection and cybersecurity in AI.
- Canada: Pan-Canadian AI Strategy advocates for the responsible development of AI. Personal Information Protection and Electronic Documents Act regulates collection, use, and disclosure of individuals' personal information using AI technologies.

AI: Regulations (2)

- Australia: National Artificial Intelligence Ethics Framework directs ethical principles in AI systems' development and implementation process.
- International organizations:
 - Organization for Economic Co-operation and Development (OECD) and United Nations are involved in setting and outlining global guidelines on AI regulation (OECD's AI Principles, United Nations Sustainable Development Goals).
- General principles of regulations:
 - *Ethical principles*: to uphold ethical principles, including transparency, fairness, and accountability, to guarantee responsible AI development and use.
 - *Data privacy*: to incorporate guidelines on how AI should collect, use, and protect personal data to eliminate privacy fears.
 - *Algorithmic bias*: measures to eliminate algorithmic bias and allow for fair and unbiased AI decision-making.
 - *Transparency and explainability*: AI systems should be transparent and easy to understand and enable users to understand how decisions are made and be accountable.
 - International collaboration: governments should cooperate with international bodies to ensure unified regulations that address global problems.

Ethics in AI for Biometrics

- *Do not harm*: avoid actions that harm people or the environment.
- *Collection*: explicit consensus and clarity in collection purpose.

- Identity theft: do not breach systems, steal biometric data that are ineffectively secured, and impersonate individuals.
- Respect personal data: when shared, stored, and processed, personal data must be respected and treated with care.
- *Misuse*: biometric data used only for collection-declared purpose.
- Justice and accountability: biometrics should be open, transparent, and accountable.
- Technology quality: biometric technology should benchmark quality, including accuracy, error detection, repair systems, and protection.
- *Human rights*: applications and use should align with human rights.
- *Equality*: biometric technology should not discriminate based on religion, age, gender, race, sexuality, or others.

Artificial Intelligence for Biometrics

Vincenzo Piuri Università degli Studi di Milano vincenzo.piuri@unimi.it https://piuri.di.unimi.it

