

safe.trAln: Safety Assurance of a Driverless Regional Train

Keynote VEHITS/SMARTGREENS 2025 | 2nd April 2025 | Marc Zeller, Siemens AG

Why safe.trAln?

"Fully Automated Train Operation" is a significant lever to reduce CO₂-Emissions because it supports the shift from individual to public transport

Overcoming the considerable shortage of train drivers

Reduction of unproductive times (paths from the train driver (TF) to and from the vehicle)

Densification of the timetable, e.g., by splitting vehicles that would otherwise run in multiple traction or additional connections in off-peak times

Increased flexibility in timetable design

Faster achievement of normal operation in the event of malfunctions, as replacement vehicles are provided more rapidly

Steps in the introduction of highly and fully automated driving

Manual operation Supervision by driver	Highly automatic operation	Fully automatic operation	
GoA 1 Manual train operation with driver Supervision and control train operation (SCO)	GoA 2 Automatic train operation with driver Semi-automated train operation (STO)	GoA 3 Automatic train operation without driver Driverless train operation (DTO)	GoA 4 Automatic train operation without staff Unattended train operation (UTO)
Provision of driving recommendations for energy-optimized train runs			
Driver drives completely manually	Automatic train operation after driver interaction	Automatic train operation	
Obstruction detection by driver		Automatic obstruction detection (obstacle detection, platform protection)	
Manual train dispatching by driver or train attendant			Central or automatic train dispatching
Train monitoring and intervention in emer- gency situations by driver or train attendant			Central monitoring or automation functions for handling of train disturbances and emergency situations

GoA Grade of Automation acc. to IEC 62267

Automation in the Railway Domain

1 GoA = Grade of Automation (acc. to IEC 62290) | 2 ODD = Operational Design Domain = Operation conditions under which an autonomous system is specifically designed to function

Establishment of a system for GoA 3/4 operation

 $\longleftarrow GoA 1 \longrightarrow \longleftarrow GoA 2 \longrightarrow \longleftarrow GoA 3/4 \longrightarrow$

Technical key challenge: Obstacle/object detection in a natural environment

Up to GoA 2 components Added components for GoA 3/4

Artificial Intelligence (AI) is required to enable object classification in open environments, but it is a big challenge to build dependable systems

According to the current state of the art, we assume that e.g., obstacle detection can only be implemented using the methods of ML (Machine Learning – a field of Al Artificial Intelligence).

What is safe.trAln?

©safe.trAln | Unrestricted | February 2025

Page 8

Safe.trAln enables Safe Perception for Driverless Regional Trains

Challenges of Al in Railway

 No safety standard for Al-based perception in rail domain

- Unclear requirements for assessment of AI
- No established tools and processes

Project goals

Safe perception for automated trains

Safety-enabling architecture Exploration of architecture patterns involving redundancy

Metrics/KPIs for (self)-evaluation

Performance metrics for online and offline evaluation

Safety case and testing

Quantitative evaluation of all approaches in virtual test field

~
~
~

Transfer to standardization

Contributions to national and European standardization activities

Consortium

Person on track and passenger in train are the 2 safety objectives for perception system

Passenger in train

The perception system will detect heavy obstacles on the tracks, a collision with which can potentially cause injuries and fatalities for passengers in the train

Heavy obstacles include, but are not limited to trees, rocks, cars, trucks, other trains, flooding, landslide...

Current safety objective of the rail operation acc. to German regulations (e. g. DB RIL 408.2341) The driver must prevent harm from the train.

Safety objectives

The perception system will prevent harm from passengers in the vehicle and persons on the track

Person on track

The perception system will detect persons on the tracks, a collision with which can potentially cause injuries and fatalities for the **person on the track**

Persons on the track include, but are not limited to workers, trespassers, playing kids, ...

Probably needed for public acceptance of driverless train operation.

It is challenging to match safety requirements with AI-related evidences

Safety Requirements for a specific application Independent of technology, (Safety Functions with Safety Integrity Level) i.e., whether AI is used or not $\sim \sim$ \checkmark How does that match? To be demonstrated for the specific case, no generally accepted "recipe" for AI fulfilling SIL exists in standards Evidence from Is this really "evidence"?

Machine Learning specific properties, metrics, thresholds, ...

ISO/IEC TR 29119-11:2020 Guideline on the testing of Al-based systems: "The currently available AI frameworks and algorithms are **not gualified** for use on the development of safety-related systems."

For what?

What did we achieve in safe.trAln?

The overall safety target relates to the concept of Recall

According to CSM RA "comparison with reference system"

Safety target: "overall as good as driver"

Regional trains rarely encounter Obstacles

 \rightarrow Evaluate safety against Probability of Failure on Demand (PFD)

> PFD = 1%

- Based on ATO-Risk¹ project and further analysis
- PFD is considered as equivalent to 1–recall, where recall =TP/(TP+FN)
- TP and FN to be evaluated against definition of safety functions
- Achieved PFD will be determined offline using validation data with ground truth
- Recall to be evaluated on set of scenarios

¹ <u>https://www.dzsf.bund.de/SharedDocs/Downloads/DZSF/Veroeffentlichungen/Forschungsberichte/2023/ForBe_40_2023_ATO_Risk_Summary_EN.pdf?_blob=publicationFile&v=5_</u>

Five Pillars of Safety Case Strategy address different aspects and must be balanced for specific circumstances

		Safety Case Strategy		
Processes tailored to applied perception specifics	Analysis of non- conventional redundancies in safety architecture	Demonstrate sufficient understanding of causalities of functional behavior	Testing with real and simulated data (in our virtual test field)	Safety Monitoring during Operation (e.g., Out-of Distribution Detection,)
	.th	III	<u>ll</u>	
The defined processes needs to cover all developmental aspects considered important for the final assurance of correct behavior of the system under consideration.	In order to achieve a low- enough false negative rate, PFD, the architecture of the system comprises redundancies to cope with faults and imperfection of different perception components.	Its goal is to demonstrate a certain level of human understanding as to why the right results are given by the system for the right reasons.	Besides process reviews, audits, checking all documents, Q-Gates, etc. tests according to an acceptable coverage criterion are required.	Higher uncertainty in functional decision and behavior and possible domain shifts needs to be compensated by more stringent field monitoring compared to conventional system.

System Definition and Requirements

Operational Design Domain (ODD) as Central Element in the Development Process

Weiss G., Zeller, M., Schoenhaar H., et al. Approach for Argumenting Safety on Basis of an Operational Design Domain. In: Proceedings of the IEEE/ACM 3rd International Conference on Al Engineering - Software Engineering for Al (CAIN ,24), 184–193 (2024). https://doi.org/10.1145/3644815.3644944

Pillar 1: To close the gap between assuring Al-based systems and conventional software systems: All Al Safety Concerns need to be addressed

Definition of AI Safety Concerns: **"AI-specific, underlying issues that may negatively impact the safety of a system."** The AI Safety community has conducted comprehensive research on identifying AI Safety Concerns^{1,2,3}:

Al Safety Concerns ¹											
Inadequate specification of ODD	Inadequate planning of performance requirements		Insufficient A developmen documentati	ll t on	Inapprop degree of transpare stakehold	riate ncy to lers	Al-rela hardw	ated are issues	Chc untr sou	pice of rustworthy data rce	Missing data understanding
Discriminative data bias	Inaccurate data labels	1	Insufficient d representatio	lata on	Inappropi splitting	riate data	Proble synthe (Realit	ems with etic data ty Gap)	Poc cho	r model design ices	Over- and underfitting
Lack of explainability	Unreliability in corner cases	Lack robu	< of istness	Uncert concer (mode	ainty ns I)	Integratio issues	n	Operational data issues		Data drift (over time)	Concept drift

1 Schnitzer, R., Hapfelmeier, A., Gaube, S., Zillner, S.: Al Hazard Management: A framework for the systematic management of root causes for Al risks. | 2 Houben, S., Akie, M., Bär, A., Brockherde, F., Feifel, P., et al.: Inspect, Understand, Overcome: A Survey of Practical Methods for Al Safety. | 3 Willers, O., Sudholt, S., Raafatnia, S., Abrecht, S.: Safety Concerns and Mitigation Approaches Regarding the Use of Deep Learning in SafetyCritical Perception Tasks

Pillar 1: Applying the Landscape of Al Safety Concerns consists of four steps

More details: Schnitzer, R., Kilian, L., Roessner, S., Theodorou, K., & Zillner, S. (2024). Landscape of AI safety concerns-A methodology to support safety assurance for AI-based autonomous systems. 8th International Conference on System Reliability and Safety (ICSRS) preprint available: <u>https://arxiv.org/abs/2412.14020</u>

Pillar 1: Landscape of AI Safety Concerns and safe MLOps Process

More details: Schnitzer, R., Kilian, L., Roessner, S., Theodorou, K., & Zillner, S. (2024). Landscape of AI safety concerns-A methodology to support safety assurance for AI-based autonomous systems.

8th International Conference on System Reliability and Safety (ICSRS) preprint available: <u>https://arxiv.org/abs/2412.14020</u>

In order to assure AI-based autonomous systems:

For each **AI Safety Concern, evidence** needs to be derived along **the whole AI life cycle** that **convincingly demonstrates** the sufficient mitigation of the respective AI Safety Concern.

Zeller, M., Waschulzik, T., Schmid, R. et al. *Toward a safe MLOps process for the continuous development and safety assurance of ML-based systems in the railway domain.* AI Ethics 4, 123–130 (2024). https://doi.org/10.1007/s43681-023-00392-4

Non-conventional redundancies and Monitoring from Pillar 2 + Pillar 5

Define dissimilar architecture elements and data paths using

- Different sensor modalities
- Different detectors using AI and non-AI algorithms

Uncertainty determination and propagation partially implemented, e.g., by High Level fusion

Monitoring of system and components at runtime

 Safety measures realized in monitors and components

Pillar 3: Sufficient Understanding of Causalities of Functional Behavior is achieved by collaboration of AI and domain experts

Approach

- Goal: provide transparency and trust in the system's decisionmaking by demonstrating sufficient understanding of the causalities behind the perception system's functional behavior
 "Does it do the right things for the right reasons?"
- Focuses on analyzing why the perception system makes certain decisions, rather than just which decisions it makes. This includes – as far as possible – identifying potential biases or confounding factors
- Limitation: While full end-to-end explainability is not feasible, this pillar calls for providing appropriate levels of observability and explainability at the component level, using techniques like TCAV, Layer-wise Relevance Propagation (LRP) and Saliency Maps

Process

- 1. For each component, observability at the input and output interfaces proportionate to its influence on safety must be implemented
- 2. For each component, appropriate methods for explainability or interpretability are implemented, if possible and meaningful
- 3. Detailed behavior validation by a domain expert, supported by a perception system expert, must show evidence of the system's suitability for use

This pillar focuses on leveraging both domain *and* perception system experts to review the system's behavior comprehensively, ensure – as much as possible – that the perception system does the right things for the right reason.

Pillar 3: Saliency Maps help identify importance of regions of interests for the prediction

Objective

Identify "What portion of the network's 'attention' goes to the track when performing a track-segmentation task?"

Method

- Compute saliency map
- Threshold saliency map
- Compute intersection over union (IoU) between ground truth and saliency map

Purpose

- Compute visual similarity measure
- Provide a baseline for the future development
- Spark discussion
- Give tangible ground for exploring the applications of explainability methods for safety argumentation

Pillar 3: Concept-Based Explanations give insight into concept coverage and relevance, providing global explainability

Purpose: Even if the AI possess adequate performance, it must also be assessed that relevant concepts, e.g., of the ODD have been intrinsically encompassed by the system

Explain the model using high level human visual concepts (images). Concepts are both understandable and meaningful to humans

Globally explain the AI decision process with the underlying concepts, rather than the individual data points or parameters used in the model.

TCAV¹ score is calculated for each concept to know how relevant it is for the target class

Mitigation: Retrain the model with images containing the missing concept (tested)

PROs

- Sole global method available
- increases transparency and trust into the model for a certifying party
- visual approach easy to comprehend by non data scientists

CONs

- Computationally very expensive
- Not all models support the necessary computations
- Missing clear guidelines for interpreting scores and setting reasonable thresholds

Basic concepts example: What concepts are relevant for track classification?

High-level concepts example: Have concepts vehicle/human on rail be learned?

Result

- Both concepts for class "obstacle" in one of the layers
- Both have identical scores → "obstacle" class is paying attention to a common context

1 Kim et al 2022 "Quantitative Testing with Concept Activation Vectors (TCAV)"

Pillar 4: Each test level focuses on a specific test object and test goal and is supported by a corresponding test environment

Test Object (SUT) Test Level Test environment Train TCS Sub-system A (e.g., Drive Control) SW System Test Virtual Test Field (VTF) SW Sub-system B (Perception) **SW Integration Test** Component A HW/Sensors (Track Detector) **Component Test 3D Mapping** Al Model IDE Safe MLOps SafAlre Pipeline AI Model V&V SW Unit Test Component B DataOps Pipeline Data Quality

Pillar 4: Test environments in safe.trAln

Pillar 4: For analysis of test results the VTF inputs and outputs are visualized

Pillar 5: Enhancing Al Safety through Runtime Monitoring of Out-of-Distribution Objects

Objectives

- Prevent unreliable AI model outputs when inputs deviate from the training distribution
- Ensure that the AI system adheres to specifications by monitoring its operation in real-time

Challenges

- Continuous monitoring introduces additional computational overhead, potentially impacting performance
- Distinction between valid OOD objects and background is challenging for widely varying sample distributions

Approach

PROWL: A prototype-based zero-shot unsupervised OOD detection and segmentation framework

Pillar 5: How to Monitor Unknown Out-of-Distribution Elements

Out-of-Distribution

Elements that are **not** defined in the ODD are considered Out-of-Distribution (OOD).

Example: Person Pose

PROWL | Prototype-based zero-shot unsupervised OOD detection and segmentation

Relies on creating a prototype feature bank for each ODD object.

 Utilizes generalized robust features based on zero-shot inference with foundation model-based feature extractors

Example: Shopping Cart/Signal Box

PROWL correctly detects OOD objects like the shopping cart and the signal box which are not considered part of ODD in this setup.

Whenever significant features of ODD elements are not detected or visible, PROWL identifies them as (additional) OOD elements.

Sinhamahapatra, Poulami, et al. "Finding Dino: A plug-and-play framework for unsupervised detection of out-of-distribution objects using prototypes." arXiv preprint https://arxiv.org/abs/2404.07664 (2024)

Summary & Outlook

Summary safe.trAIn enables Safe Perception for Driverless Regional Trains

Challenges of Al in Railway

- No safety standard for Albased perception in rail domain
- Unclear requirements for assessment of AI
- No established tools and processes

Project goals

Safe perception for automated trains							
Safety- nabling rchitect- ure	Metrics/KP Is for (Self)- evaluation	Safety case and testing	Transfer to Standardi- zation				
	(

- Safety target approx. 1% Probability of Failure on Demand (PFD)
- 5 Pillars for safety assurance
 - 1. Processes
 - 2. Analysis of non-conventional redundancies
 - 3. Sufficient understanding of causalities
 - 4. Testing with real & simulated data
 - 5. Safety monitoring during operation
- Balance between the 5 pillars and how they can compensate for each other's weaknesses guides the safety validation
- "Landscape of AI safety concerns" guides systematically the safety assurance
 - Analyzing ML-specific safety concerns
 - Find mitigating measures along the development life-cycle

Questions?

Dr. Marc Zeller

Siemens AG Friedrich-Ludwig-Bauer-Str. 3 85748 Garching

marc.zeller@siemens.com

safetrain-projekt

This research has received funding from the Federal Ministry for Economic Affairs and Climate Action (BMWK) under grant agreements 19I21039A.

