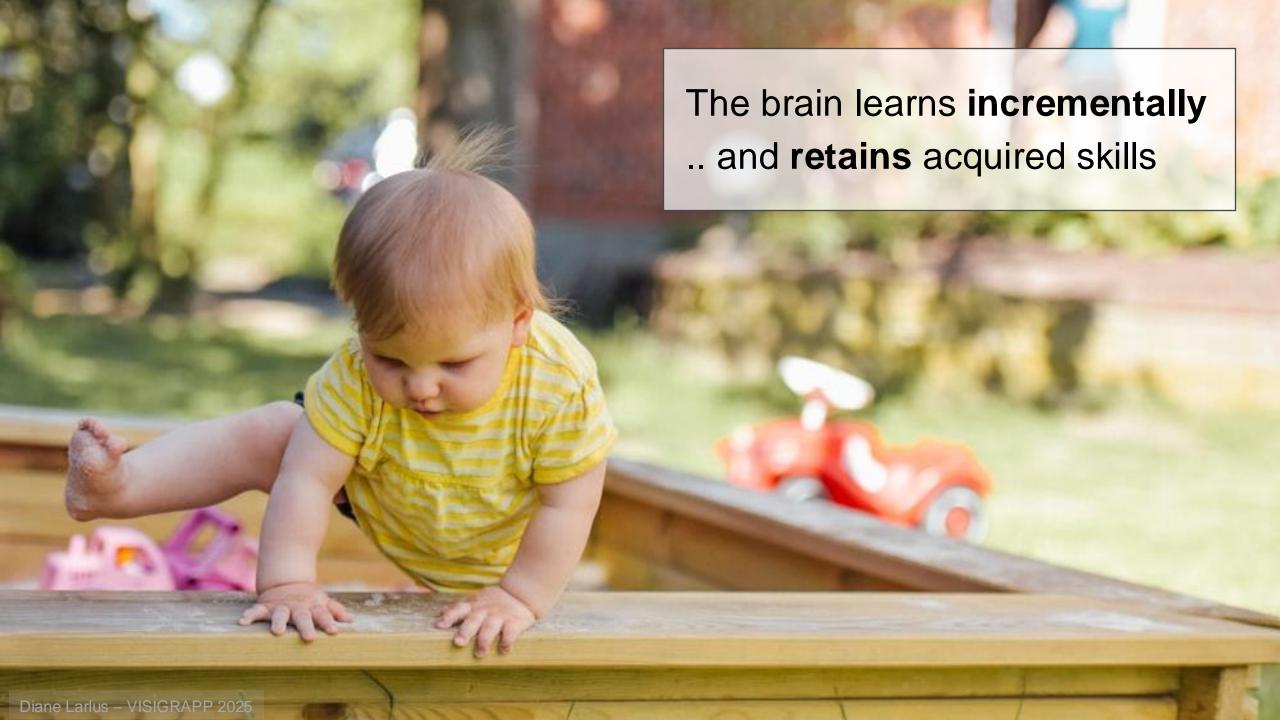
Lifelong Learning for Visual Representations

Diane Larlus

February 2025 – VISIGRAPP 2025

20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications

Motivation for lifelong learning

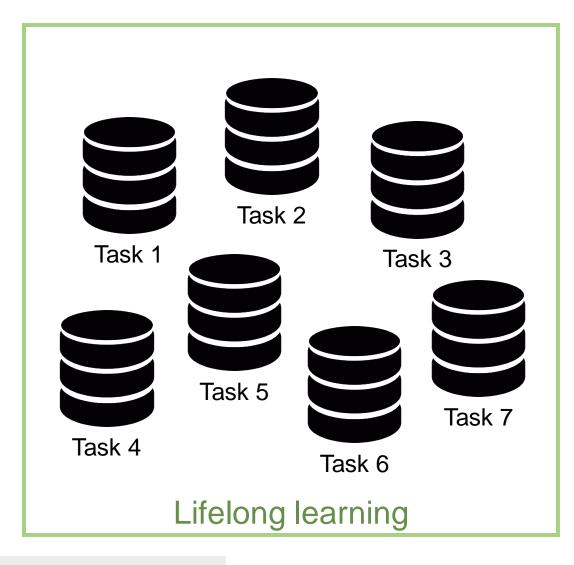


We can **limit compute** ...

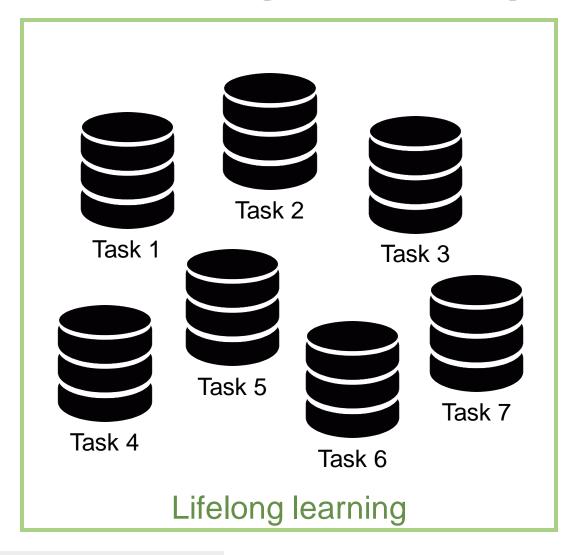
.. by reusing, adapting, transferring

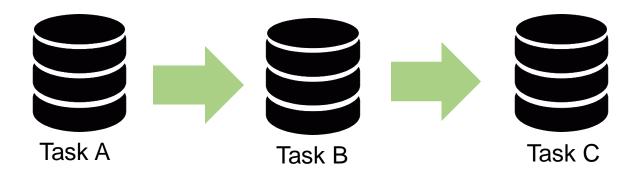
Unknown environments require generalization and adaptation

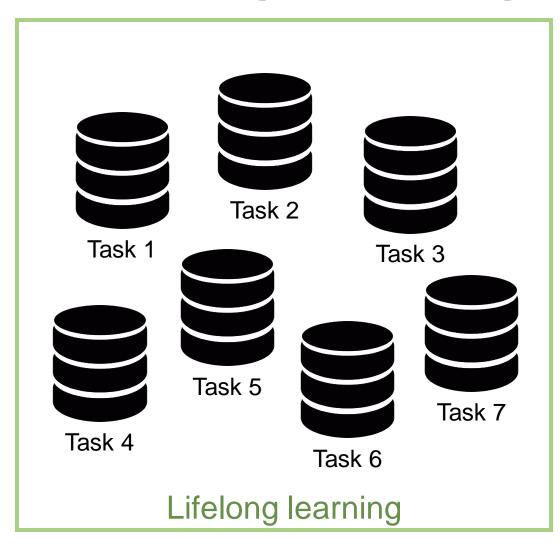
A broad definition

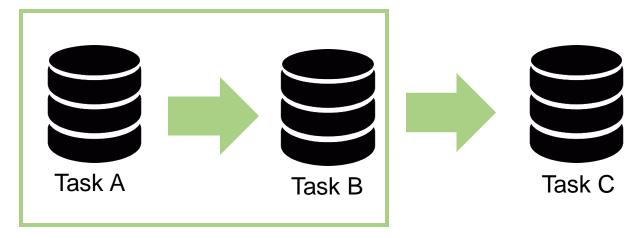


- Learn incrementally
- Retain acquired skills
- Reuse / recycle / extend skills

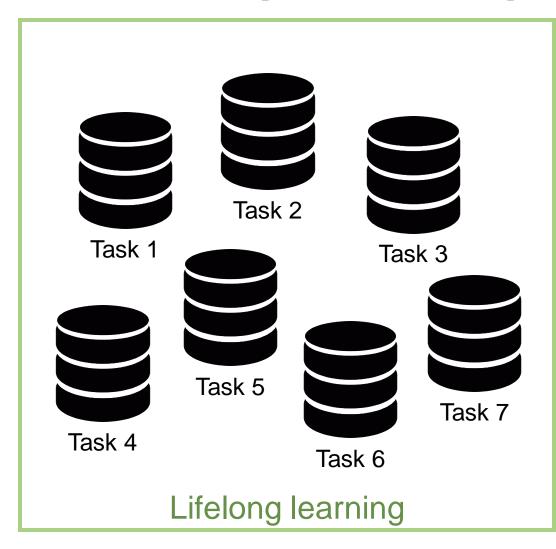


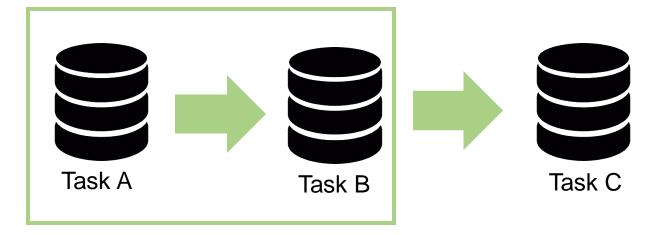






Option 1: Task A is **only** a **starting point** for Task B

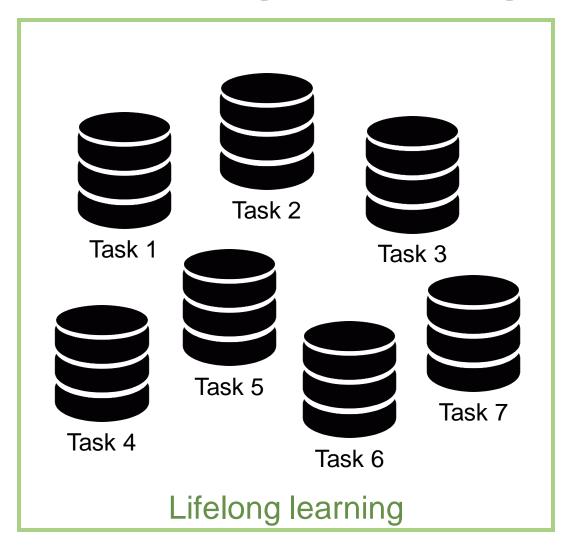


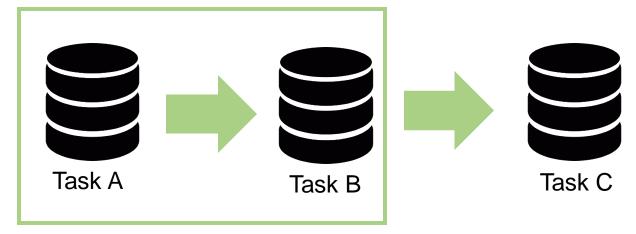


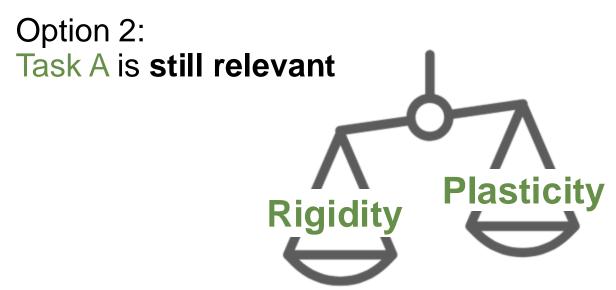
Option 2: Task A is still relevant

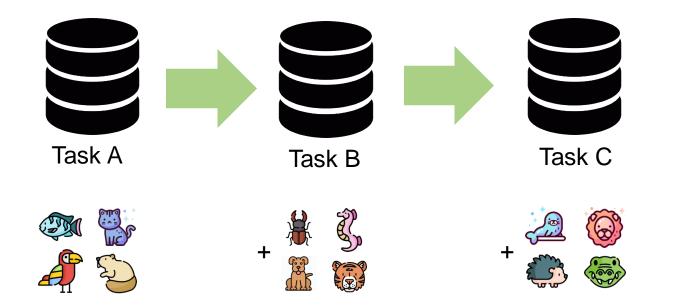
Main challenge Catastrophic forgetting

[French@CognitiveScience99]



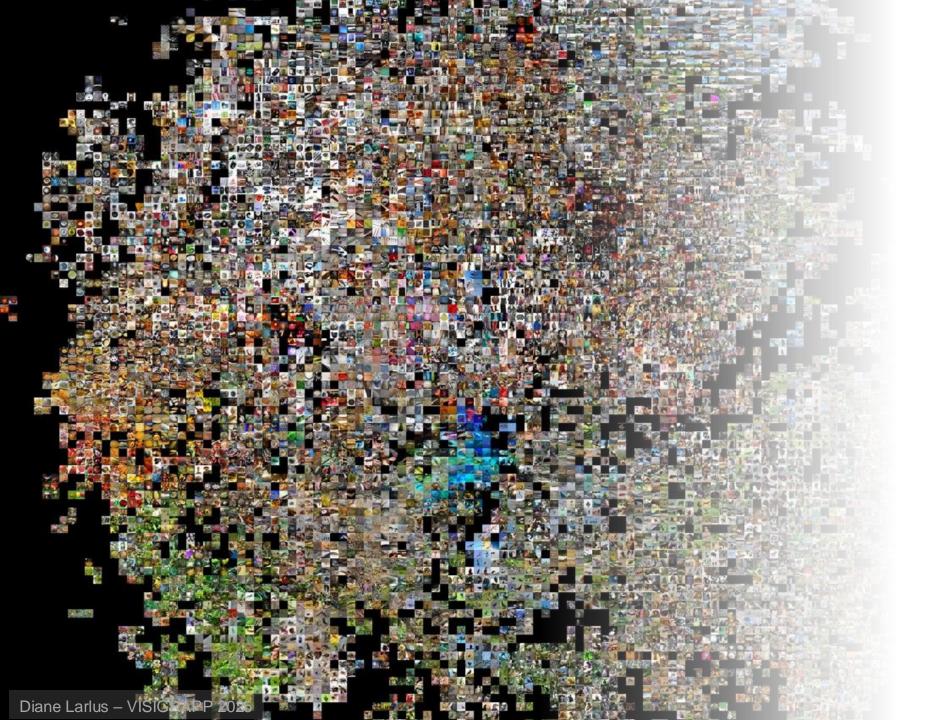




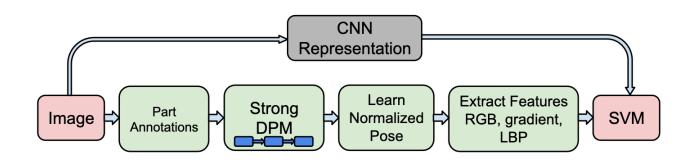


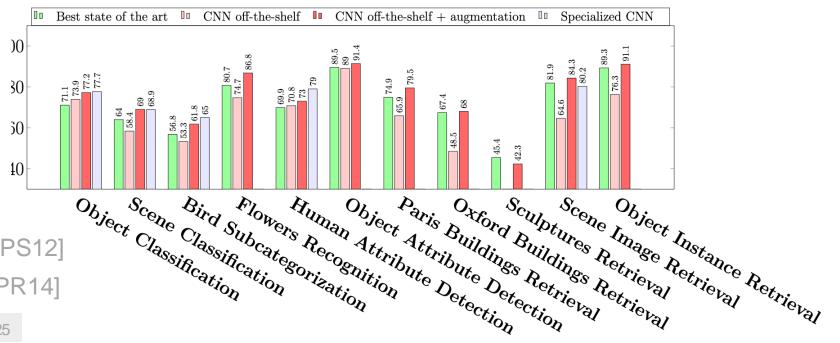
Continual learning

in the age of large pretrained models

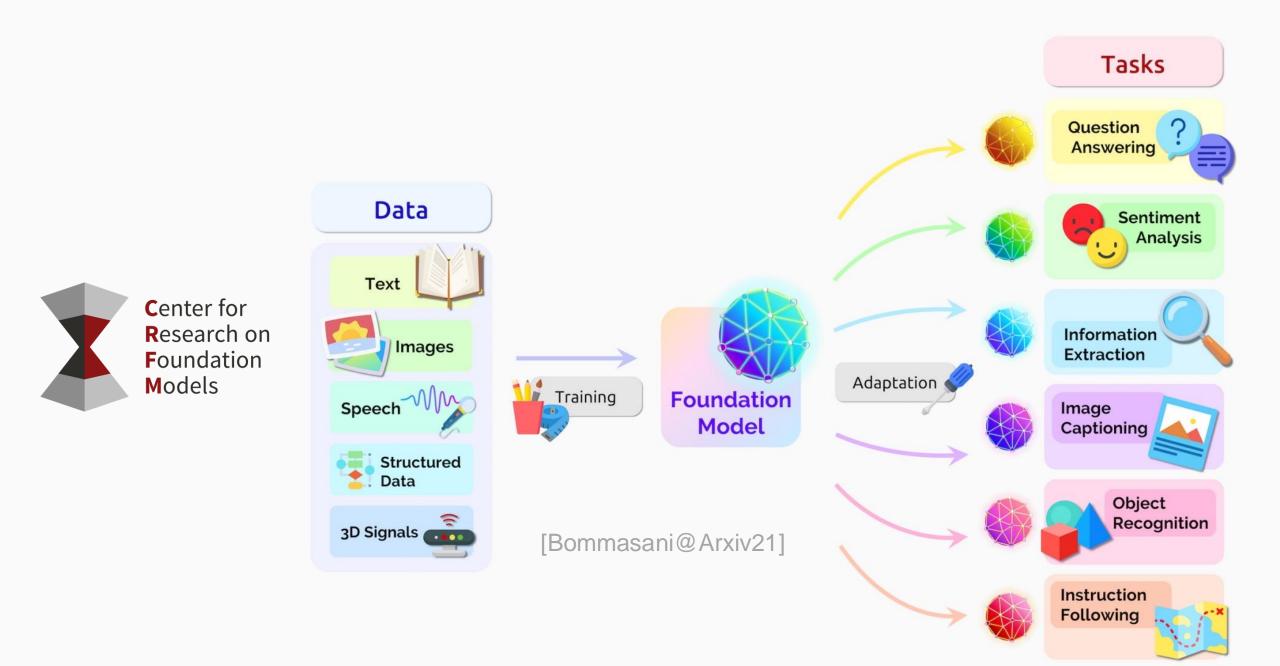


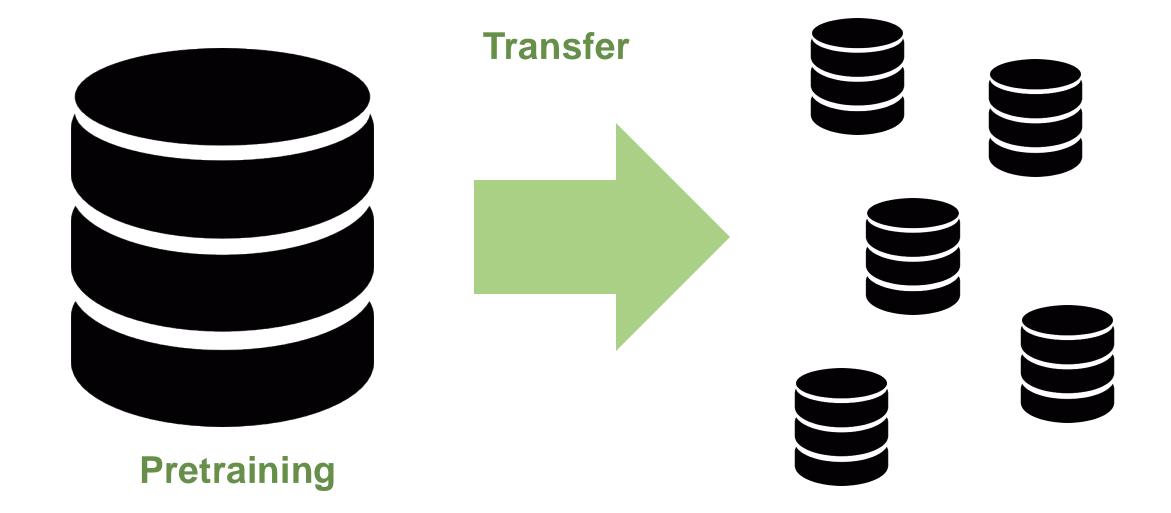
CNN Features off-the-shelf: IMAGENET an Astounding Baseline for Recognition





[Krizhevsky@NeurIPS12] [Razavian@W_CVPR14]





Let's assume two phases

Pretraining & Transfer

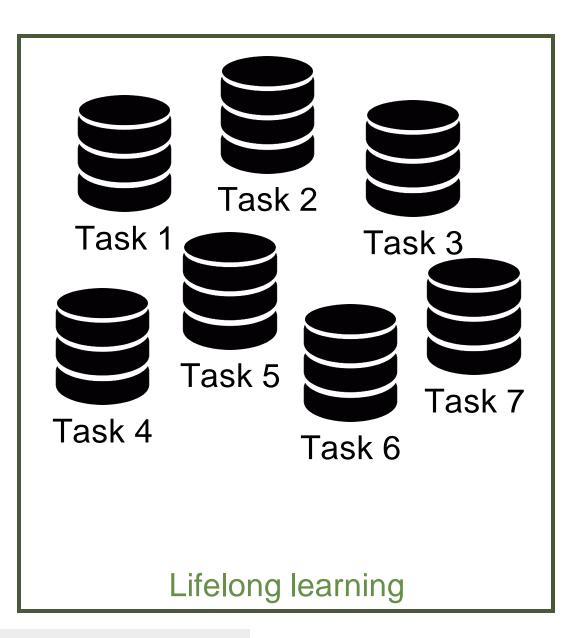
What comes next

- How can we pretrain a good model?
 - Evaluating generalization capabilities
 - Training visual features using data beyond images
- How should we transfer?
 - From one pretrained model to a specific task
 - From multiple pretrained models

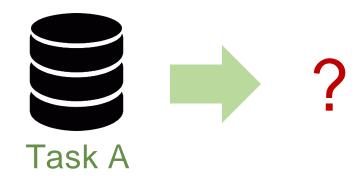
Pretraining strong models

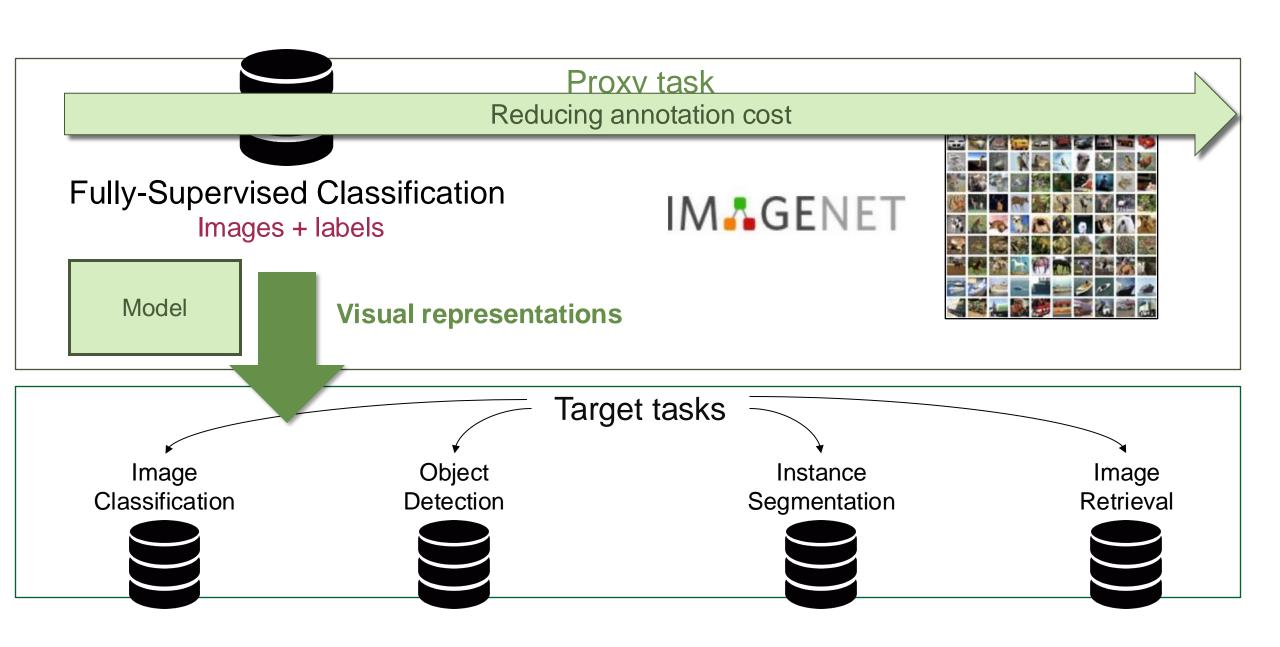
A "good" pretrained model

- Broad knowledge
- Robust to concept shifts
- Easily adapts to new tasks



We don't know the target task

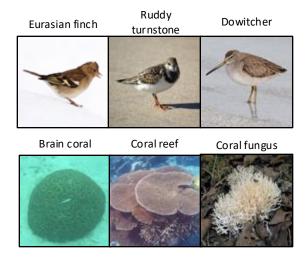




Reducing annotation cost

Fully-Supervised

fine-grained annotations expert knowledge

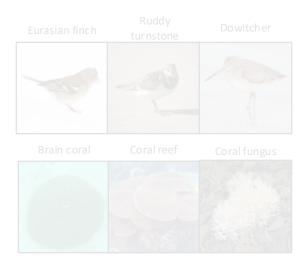


Self-supervised annotation-free images

No supervision

Reducing annotation cost

Fully-Supervised fine-grained annotations expert knowledge

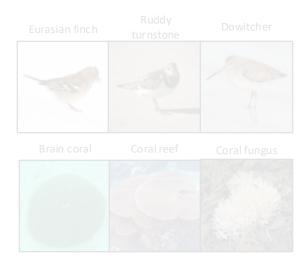


Self-supervised annotation-free images

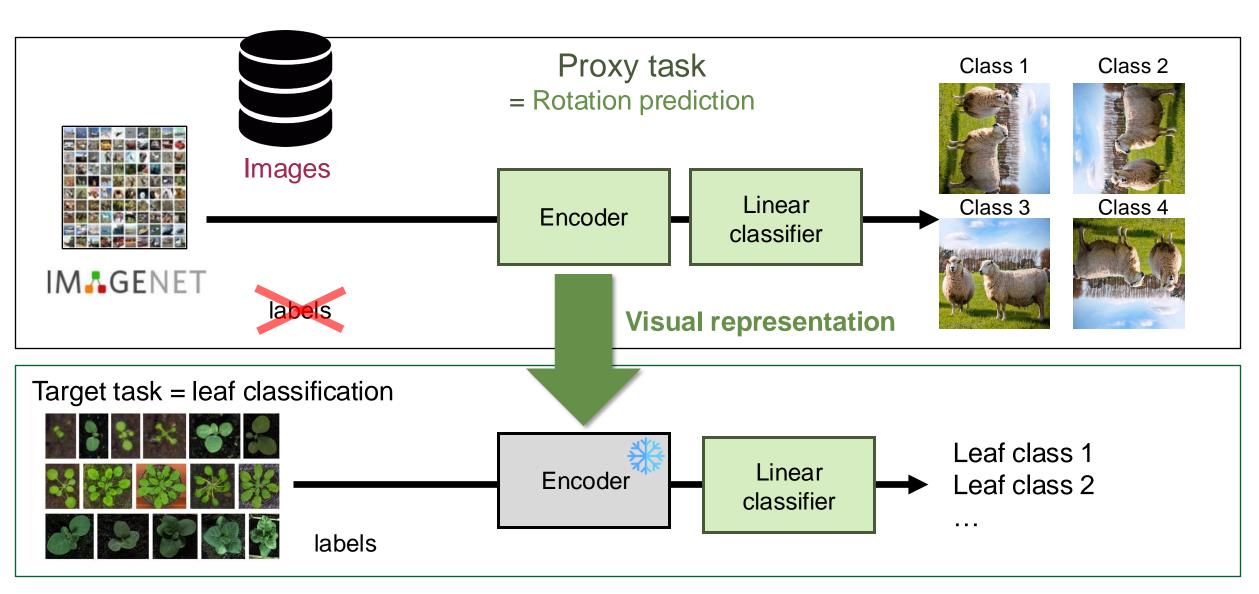
No supervision

Reducing annotation cost

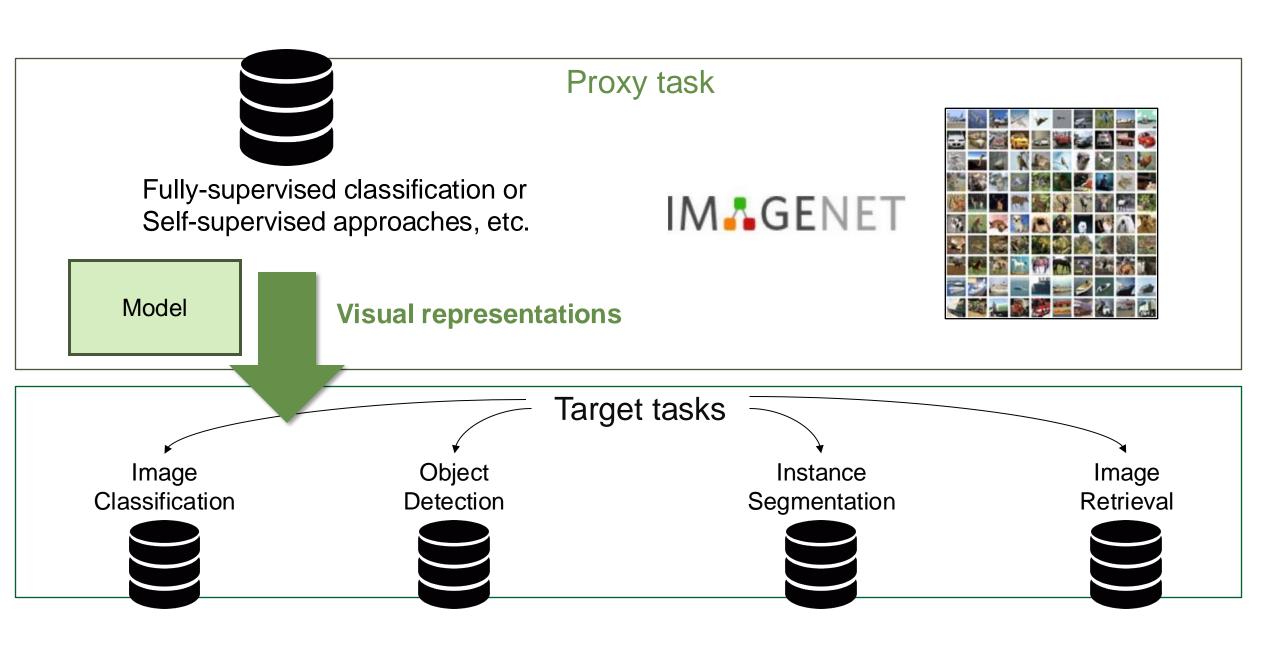
Fully-Supervised fine-grained annotations expert knowledge



Self-supervised annotation-free images



How well do those pretrained models generalize?



Proxy task

Fully-supervised classification or Self-supervised approaches, etc.

Model

Visual representations

Target tasks

??

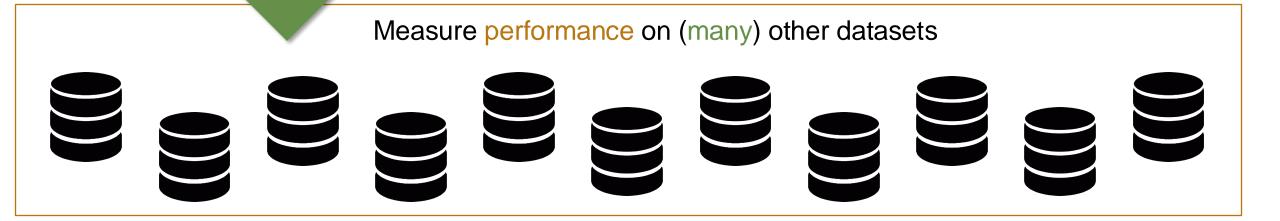
How well does the produced visual representation transfer?

Proxy task

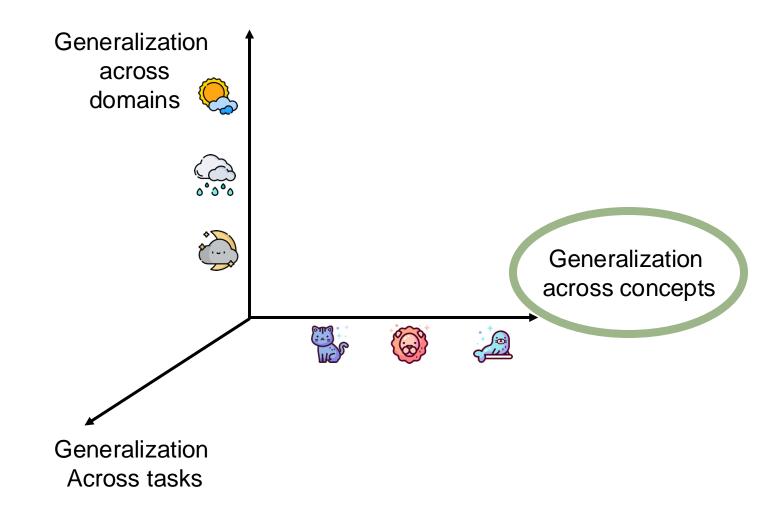
Fully-supervised classification or Self-supervised approaches, etc.

Model

Visual representations



Target task

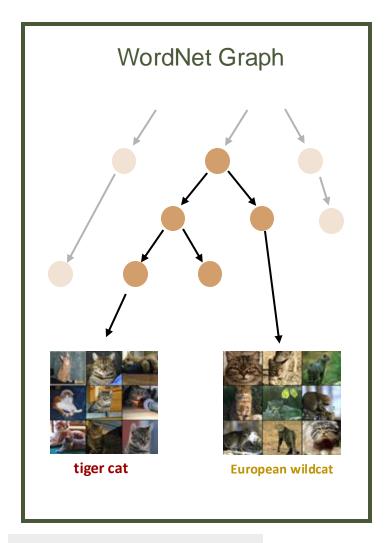


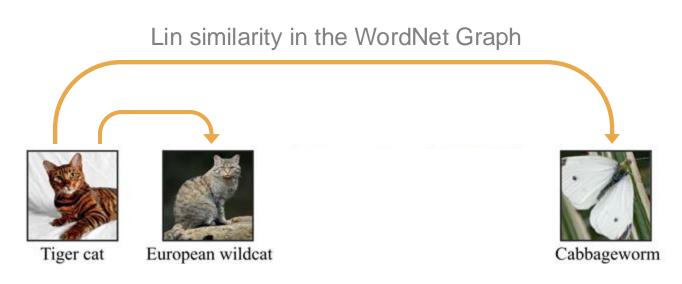
Evaluation of visual representations – concept generalization

When training a model on a set of **seen** concepts, how well does it **generalize** to **new, unseen** concepts?

Hypothesis: Semantic similarity between seen and unseen concepts matters for generalization

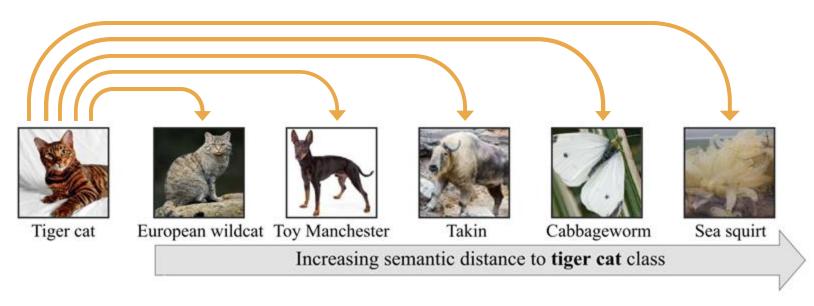
Semantic distance between concepts





[Lin: Lin@ICML1998]

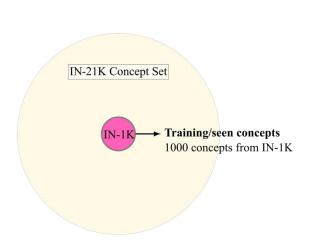
Semantic distance between concepts

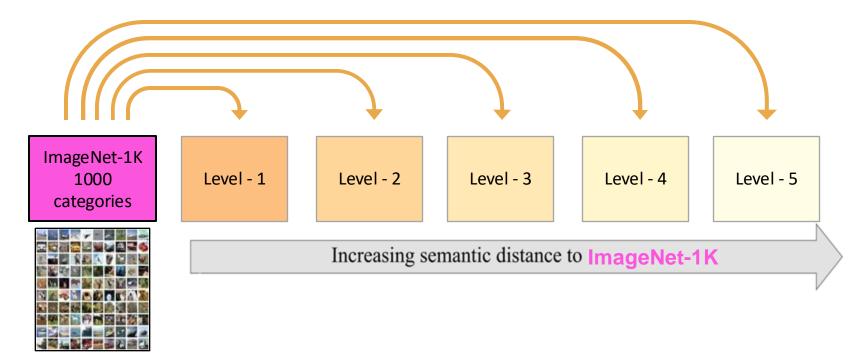


[Lin: Lin@ICML1998]

Semantic distance between sets of concepts

[ImageNet: Deng@CVPR2009]

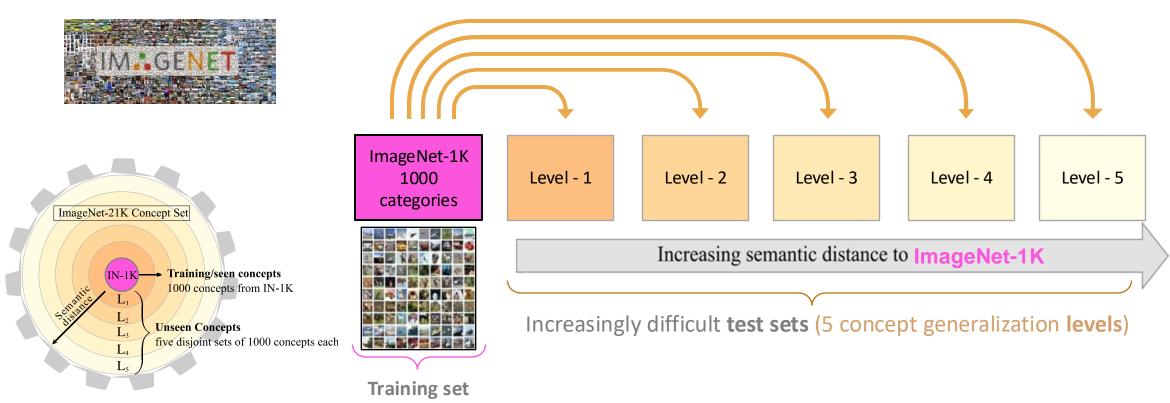




[CoG: Sariyildiz@ICCV21]

The Concept Generalization (CoG) benchmark

[ImageNet: Deng@CVPR2009]

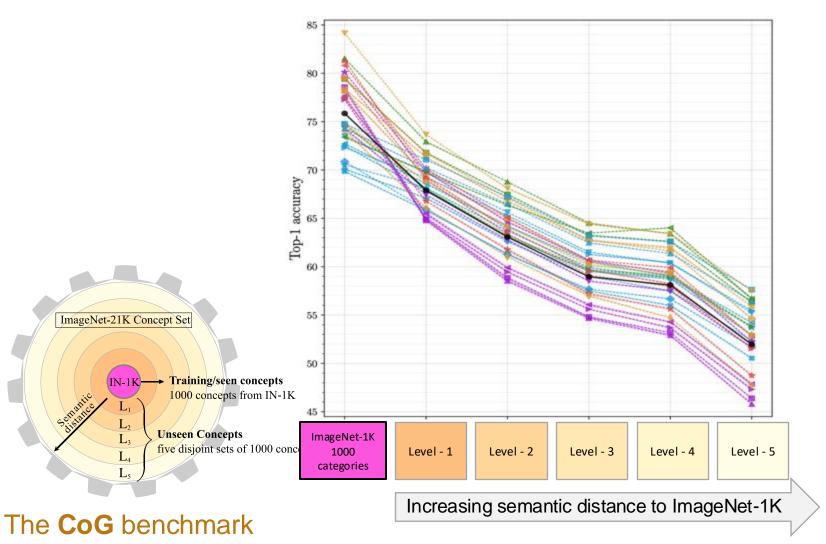


The **CoG** benchmark

[CoG: Sariyildiz@ICCV21]

Observations

• It is harder to generalize to semantically distant concepts



a-T2T-ViT-t-14	Visual transformer (21.5M)
a-DeiT-S	Visual transformer (22M)
a-DeiT-S-distilled	Distilled a-DeiT-S (22M)
a-Inception-v3	CNN with inception modules (27.2M)
a-NAT-M4	Neural architecture search model (7.6M)
a-EfficientNet-B1	Neural architecture search model (7.8M)
a-DeiT-B-distilled	Bigger version of a-DeiT-S-distilled (87.6M)
a-ResNet152	Bigger version of ResNet50 (60.2M)
a-VGG19	Simple CNN architecture (143.5M)

s-SimCLR-v2	ResNet50 models trained in this framework Online instance discrimination (ID)
s-MoCo-v2	ID with momentum encoder and memory bank
s-SwAV	Online clustering
s-BYOL	Negative-free ID with momentum encoder
s-MoCHi	ID with negative pair mining
s-InfoMin	ID with careful positive pair selection
s-OBoW	Online bag-of-visual-words prediction
s-CompReSS	Distilled from SimCLR-v1 (with ResNet50x4)

r-MixUp	Label-associated data augmentation
r-Manifold-MixUp	Label-associated data augmentation
r-CutMix	Label-associated data augmentation
r-ReLabel	Trained on a "multi-label" version of IN-1K
r-Adv-Robust	Adversarially robust model
r-MEAL-v2	Distilled ResNet50

Use of web data: Res	sNet50 models using additional data
d-MoPro	Trained on WebVision-V1 (~ 2×)
d-Semi-Sup	Pretrained on YFCC-100M ($\sim 100 \times$), then fine-tuned on IN-1K
d-Semi-Weakly-Sup	Pretrained on IG-1B (~ 1000×), then fine-tuned on IN-1K
d-CLIP	Trained on WebImageText (~ 400×)

[CoG: Sariyildiz@ICCV21]

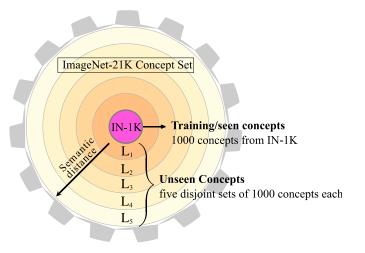
Observations

- It is harder to generalize to semantically distant concepts
- Recent self-supervised approaches generalize better
- Label-based augmentations hurt concept generalization

Reference

Concept generalization in visual representation learning

Mert Bulent Sariyildiz, Yannis Kalantidis, Diane Larlus, Karteek Alahari ICCV 2021



The **CoG** benchmark

a-T2T-ViT-t-14	Visual transformer (21.5M)
a-DeiT-S	Visual transformer (22M)
a-DeiT-S-distilled	Distilled a-DeiT-S (22M)
a-Inception-v3	CNN with inception modules (27.2M)
a-NAT-M4	Neural architecture search model (7.6M)
a-EfficientNet-B1	Neural architecture search model (7.8M)
a-DeiT-B-distilled	Bigger version of a-DeiT-S-distilled (87.6M)
a-ResNet152	Bigger version of ResNet50 (60.2M)
a-VGG19	Simple CNN architecture (143.5M)

s-SimCLR-v2	Online instance discrimination (ID)
s-MoCo-v2	ID with momentum encoder and memory bank
s-SwAV	Online clustering
s-BYOL	Negative-free ID with momentum encoder
s-MoCHi	ID with negative pair mining
s-InfoMin	ID with careful positive pair selection
s-OBoW	Online bag-of-visual-words prediction
s-CompReSS	Distilled from SimCLR-v1 (with ResNet50x4)

Regularization: Res	Net50 models with additional regularization
r-MixUp	Label-associated data augmentation
r-Manifold-MixUp	Label-associated data augmentation
r-CutMix	Label-associated data augmentation
r-ReLabel	Trained on a "multi-label" version of IN-1K
r-Adv-Robust	Adversarially robust model
r-MEAL-v2	Distilled ResNet50

Use of web data: Res	sNet50 models using additional data
d-MoPro	Trained on WebVision-V1 (~ 2×)
d-Semi-Sup	Pretrained on YFCC-100M ($\sim 100 \times$), then fine-tuned on IN-1K
d-Semi-Weakly-Sup	Pretrained on IG-1B (~ 1000×), then fine-tuned on IN-1K
d-CLIP	Trained on WebImageText (~ 400×)

[CoG: Sariyildiz@ICCV21]

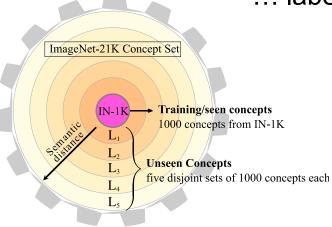
Observations

Recent self-supervised approaches generalize better

Yes, but ..

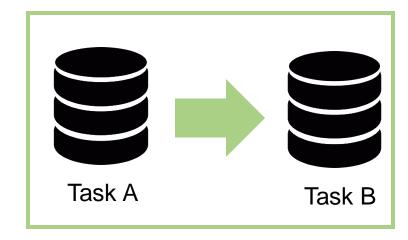
- .. a good model should shine **both** on
- Training task
- Transfer tasks

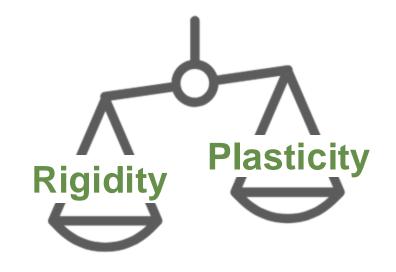
... labels shouldn't hurt

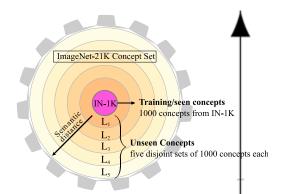


The **CoG** benchmark

Option 2: Task A is **still relevant**

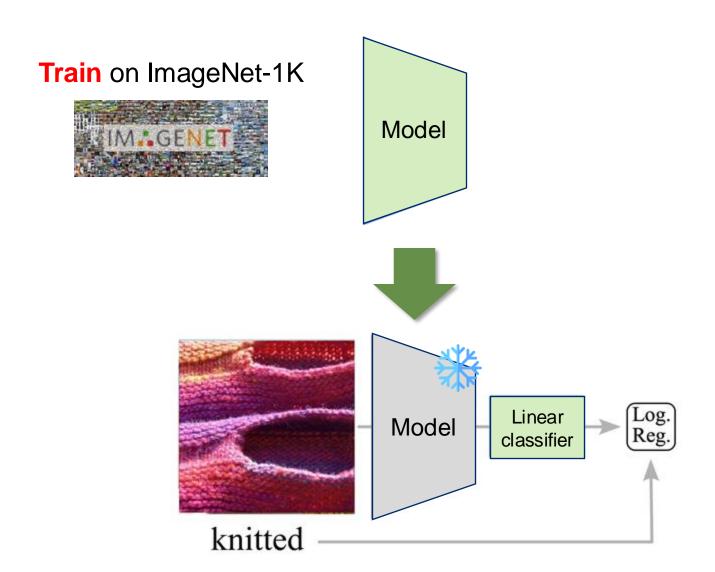




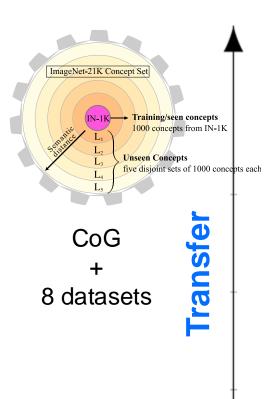


CoG + 8 datasets

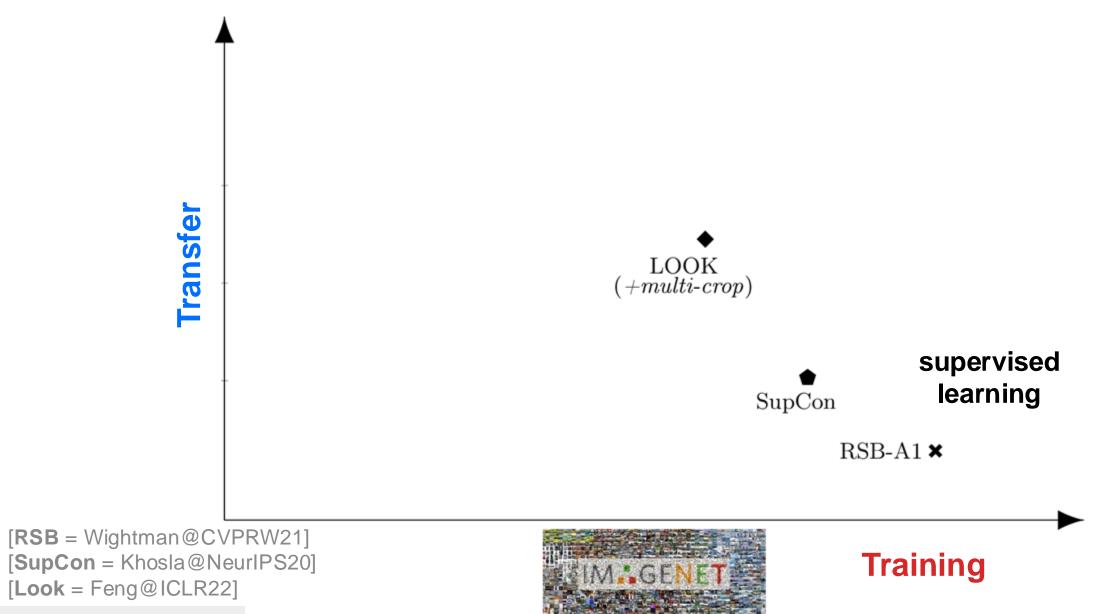
- .. a good model should shine both on
- Training task
- Transfer tasks
- ... labels shouldn't hurt



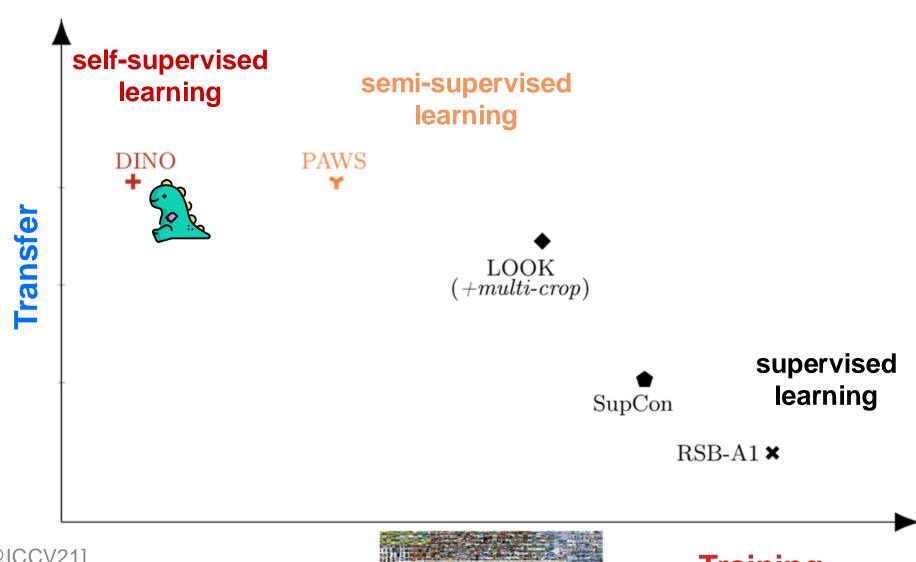
For the **Training** task + every **Transfer** task



Training

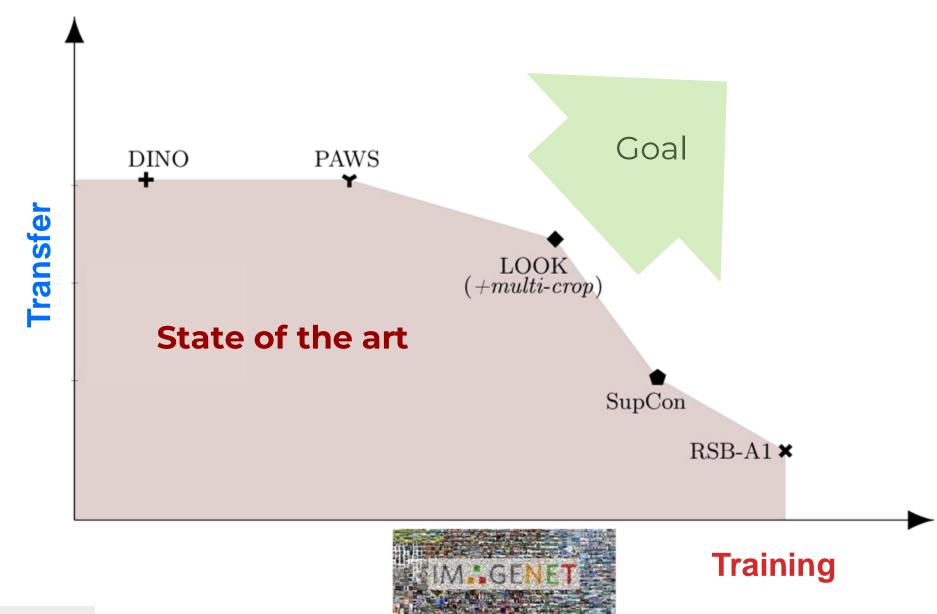


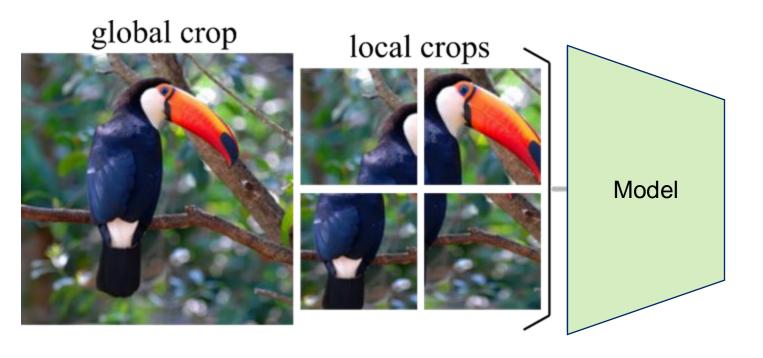
Diane Larlus – VISIGRAPP 2025



[DINO = Caron@ICCV21] [PAWS = Assran@ICCV21]

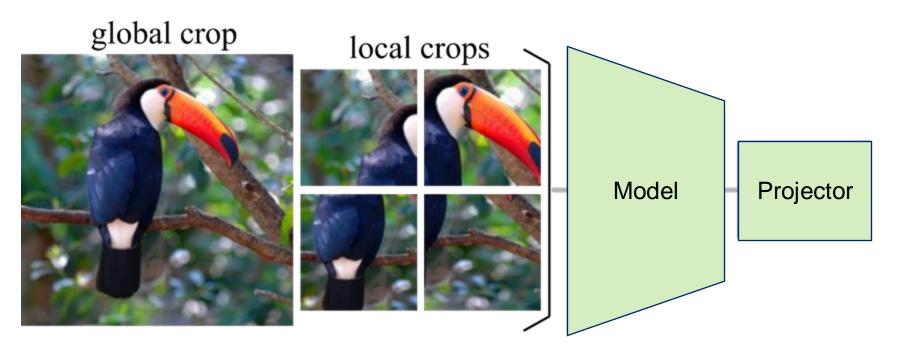
Training





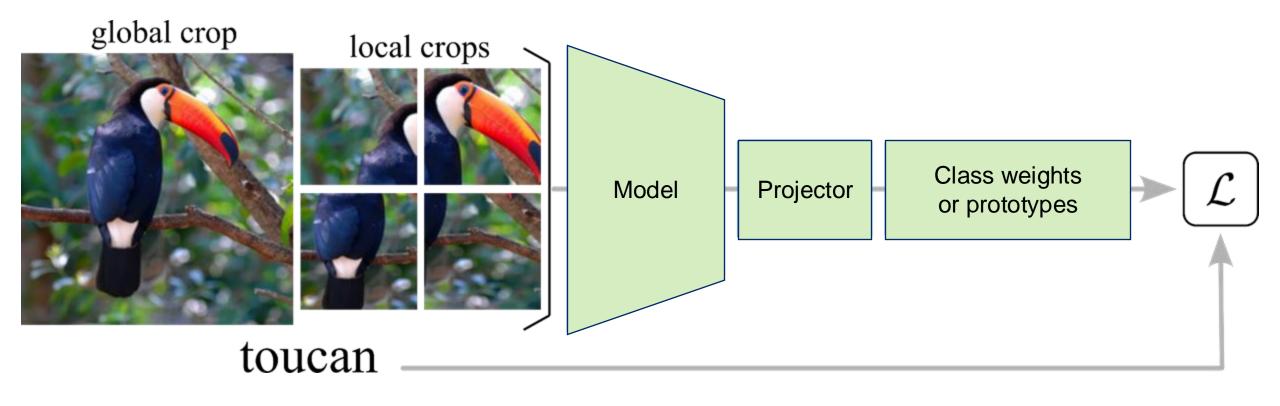
1. Multi-crop data augmentation

[SWAV = Caron@NeurlPS20] [DINO = Caron@ICCV21]



- 1. Multi-crop data augmentation
- 2. Expendable projector head

[MoCo = He@CVPR20] [SimCLR = Chen@ICML20] [MoChi = Kalantidis@NeurIPS20] [DiNO = Caron@NeurIPS21] [Wang@CVPR22]

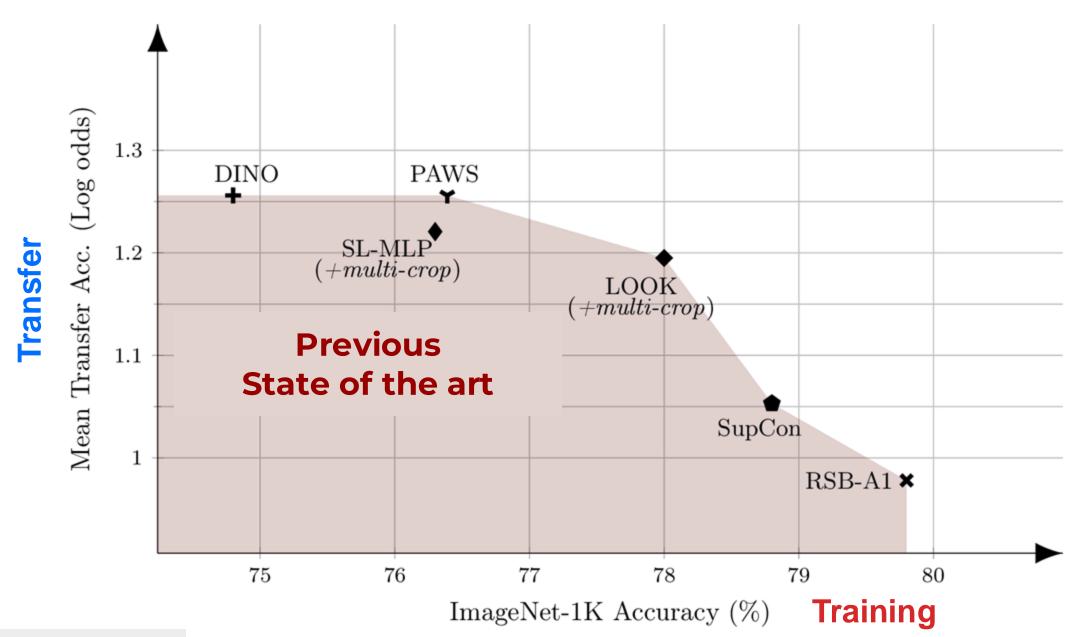


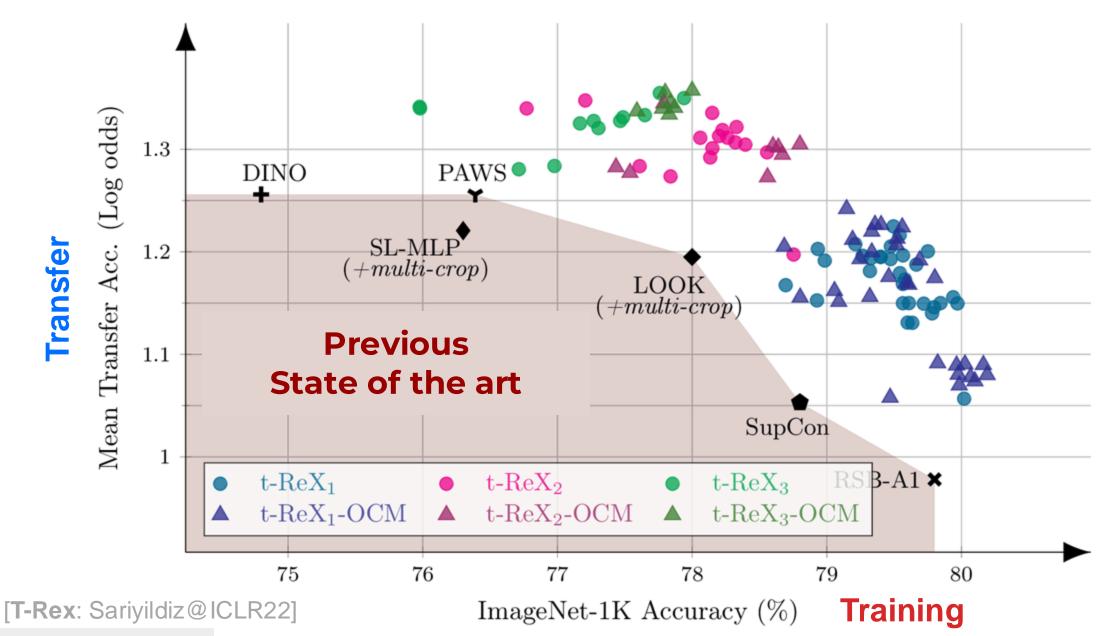
- 1. Multi-crop data augmentation
- 2. Expendable projector head
- 3. (optional) Replace class weights with class prototypes

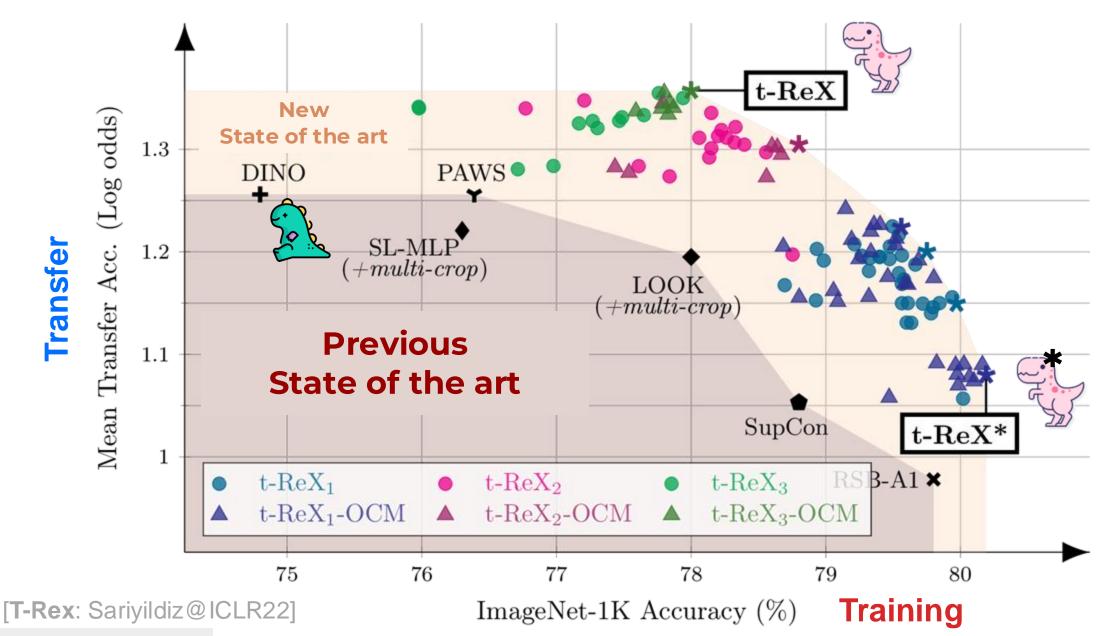
Nearest Class Means (NCM)

[NCM = Mensink@ECCV12] [DeepNCM = Guerriero@W-ICLR18]

[T-Rex: Sariyildiz@ICLR22]







Take home message

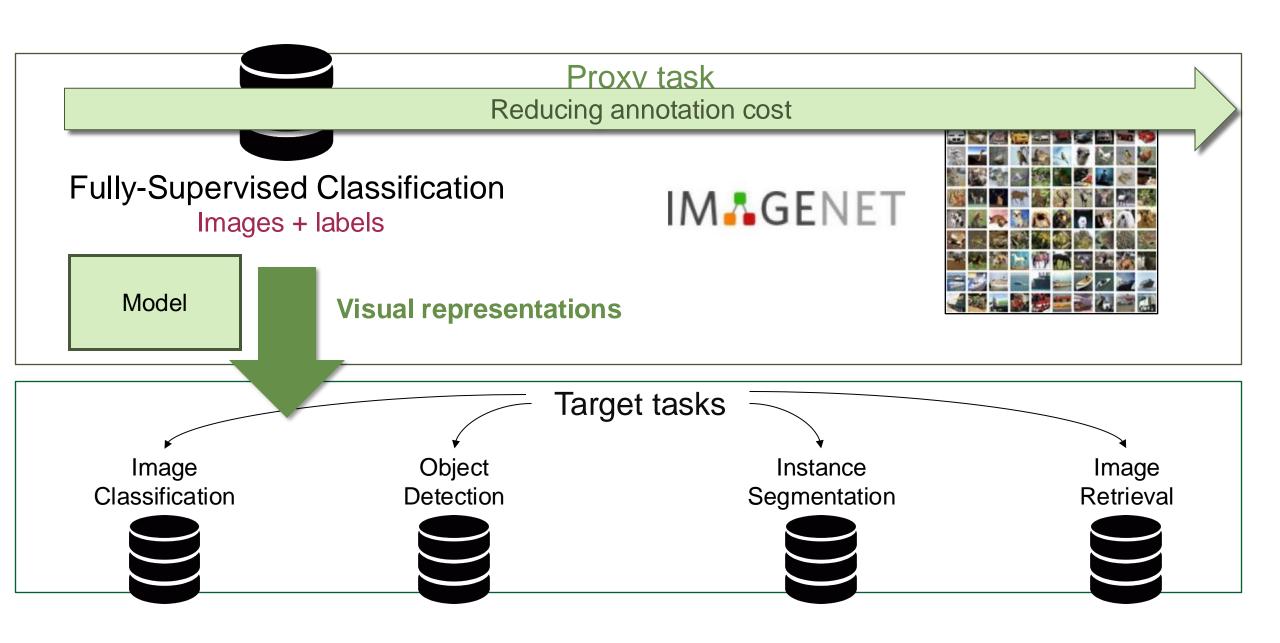
There is **no reason for no supervision!**

- Multi-crop data augmentation helps
- Expendable projector controls Training / Transfer trade-off

Reference

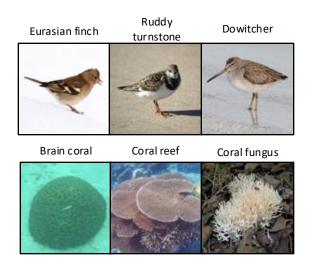
No Reason for No Supervision: Improved Generalization in Supervised Models Mert Bulent Sariyildiz, Yannis Kalantidis, Karteek Alahari, Diane Larlus ICLR 2023

Pretraining visual representations from multimodal data .. or models



Reducing annotation cost

Fully-Supervised fine-grained annotations



Self-supervised annotation-free images

Reducing annotation cost

Fully-Supervised fine-grained annotations

Eurasian finch Ruddy turnstone Dowitcher Brain coral Coral reef Coral fungus

Caption-supervised side information

a statue of a man stands in front of an old red bus.
a big and red bus with many displays for people to watch.
a red double decker bus parked next to a statue.
the double decker bus is beside a statue near restaurant tables.
a view of a bus sitting in front a small wooden statue.

a busy street with cars and trucks down it an intersection with a view that looks towards a small downtown area. cars parked on the side of the street and traveling down the road an intersection with a stop light on a city street. a street filled with lots of traffic under a traffic light.

Self-supervised annotation-free images

Weak annotations

Reducing annotation cost

Fully-Supervised fine-grained annotations

Caption-supervised side information

a statue of a man stands in front of an old red bus.
a big and red bus with many displays for people to watch.
a red double decker bus parked next to a statue.
the double decker bus is beside a statue near restaurant tables.
a view of a bus sitting in front a small wooden statue.

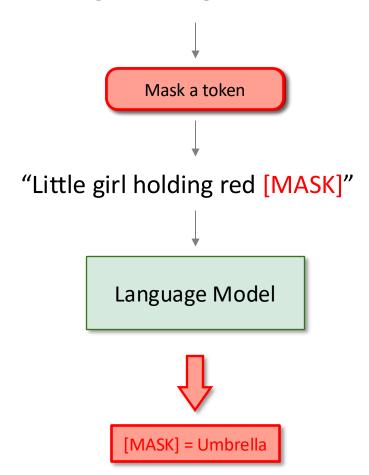
a busy street with cars and trucks down it an intersection with a view that looks towards a small downtown area. cars parked on the side of the street and traveling down the road an intersection with a stop light on a city street. a street filled with lots of traffic under a traffic light.

Self-supervised annotation-free images

Text

"Little girl holding red umbrella"

BERT model [Delvin *et al.* 2018]



Input: Image

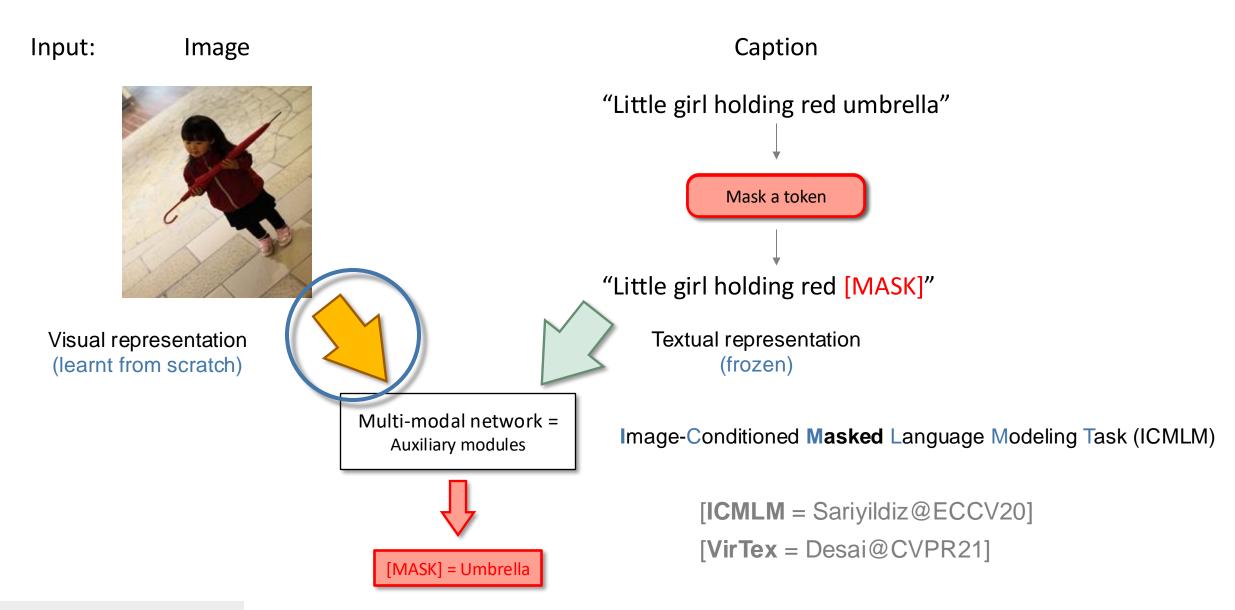
Caption

"Little girl holding red umbrella"

| Mask a token

"Little girl holding red [MASK]"

[MASK] = Umbrella



Weak annotations

Reducing annotation cost

[ICMLM = Sariyildiz@ECCV20]

[VirTex = Desai@CVPR21]

Caption-supervised side information smaller sets

a statue of a man stands in front of an old red bus.
a big and red bus with many displays for people to watch.
a red double decker bus parked next to a statue.
the double decker bus is beside a statue near restaurant tables.
a view of a bus sitting in front a small wooden statue.

Weak annotations

Reducing annotation cost

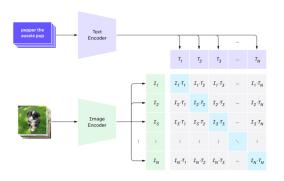
[ICMLM = Sariyildiz@ECCV20]

scale

Dataset

[VirTex = Desai@CVPR21]

[CLIP = Radford@ICLM21]



Caption-supervised side information smaller sets

a statue of a man stands in front of an old red bus.
a big and red bus with many displays for people to watch.
a red double decker bus parked next to a statue.
the double decker bus is beside a statue near restaurant tables.
a view of a bus sitting in front a small wooden statue.

Unfiltered Image + Text large scale

Text-to-image generation

[DALL-E = Ramesh@ICML21]

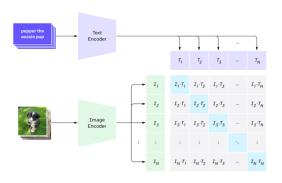
[DALL-E2 = Saharia@NeurlPS21]

[DALL-E3 = Betker@TechReport23]

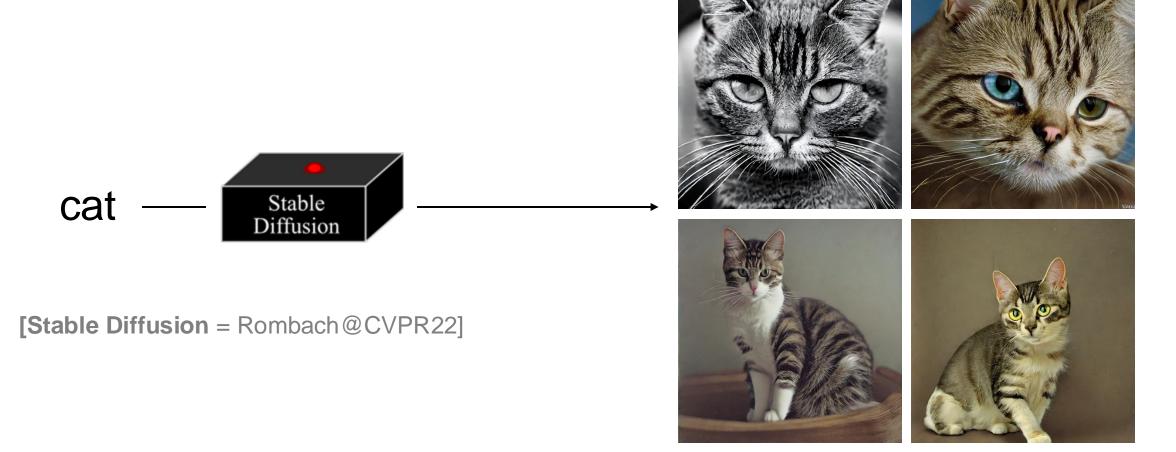
[Stable diffusion = Rombach@CVPR22]

[Stable diffusion 3 = Esser@Arxiv24]

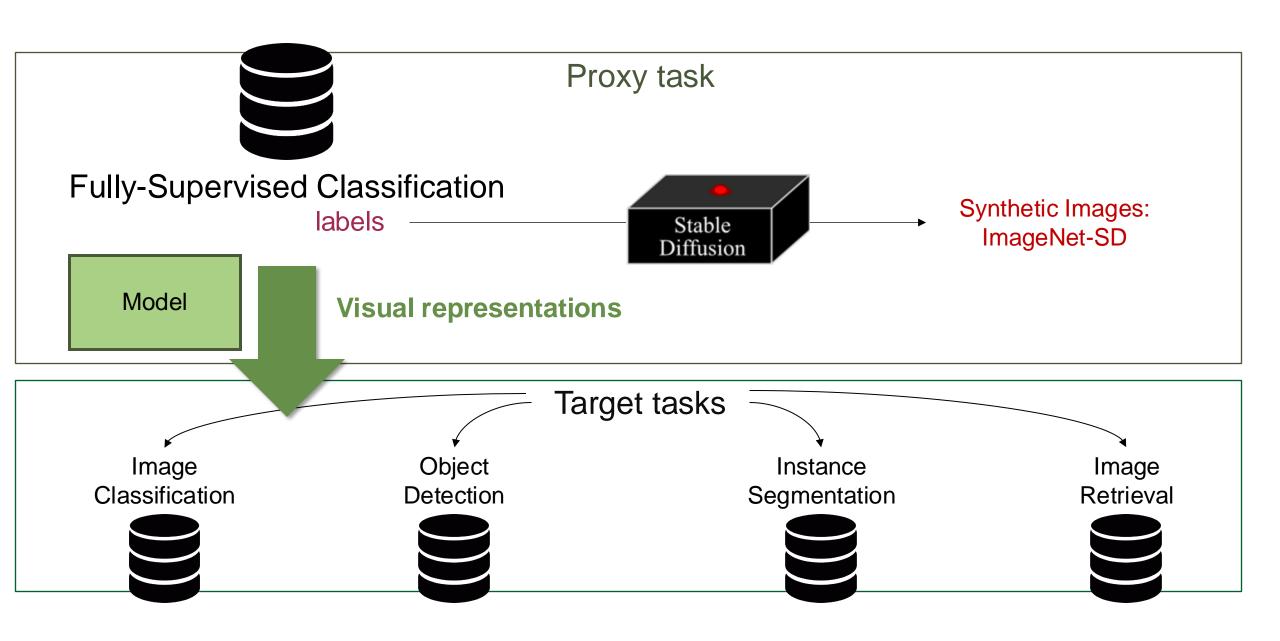
[CLIP = Radford@ICLM21]

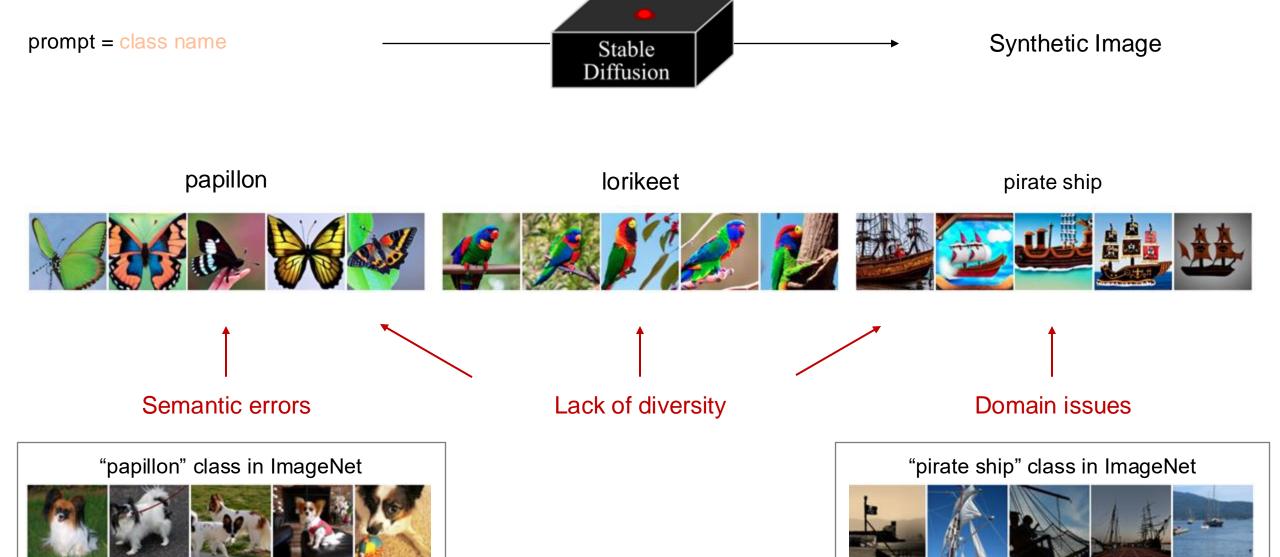


Unfiltered Image + Text large scale



Do we still need actual images to (pre-)train visual representations?





prompt = class name

prompt = class name, hypernym*

prompt = class name, description*

prompt = class name, hypernym inside background**

prompt = class name, description (+ reduce guidance scale)

How well does each model perform when classiying real images?

- * from Wordnet lexical database
- ** from **Places 365** dataset

Performance on ImageNet-100-Val (**Top-1** acc - **real images**)

[ImageNetSD = Sariyildiz@CVPR23]

prompt = class name
prompt = class name, hypernym*

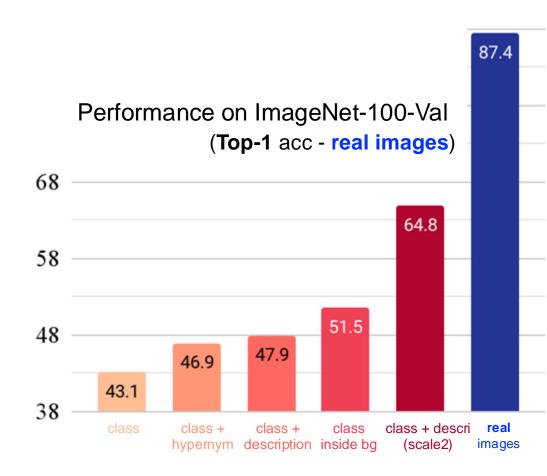
prompt = class name, description*

prompt = class name, hypernym inside background**

prompt = class name, description (+ reduce guidance scale)

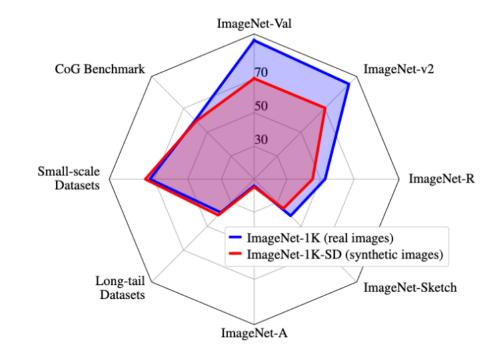
[ImageNetSD = Sariyildiz@CVPR23]

- * from Wordnet lexical database
- ** from **Places 365** dataset



Do we still need actual images to pretrain visual representations?

- Promising results on the ImageNet variants
- Strong transfer results

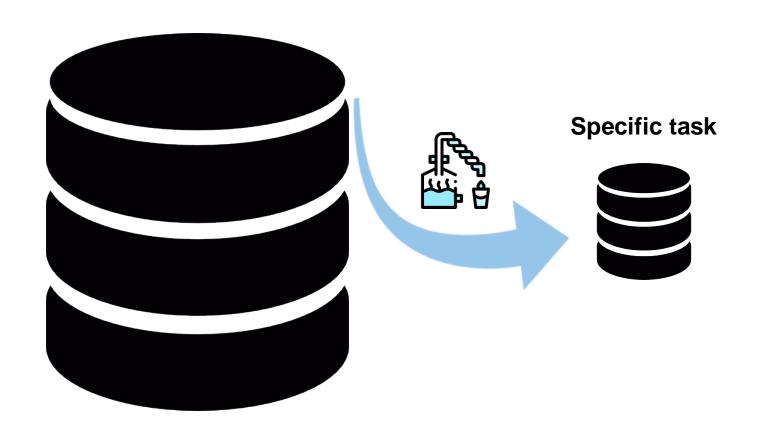


Reference

Fake it till you make it: Learning transferable representations from synthetic ImageNet clones
Mert Bulent Sariyildiz, Karteek Alahari, Diane Larlus, Yannis Kalantidis
CVPR 2023

Once we've pretrained, what do we do?

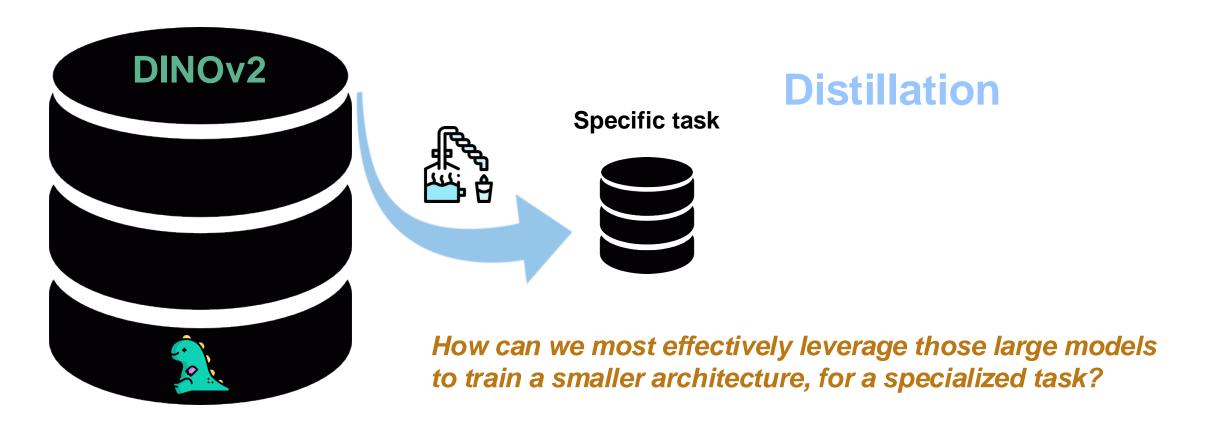
Adapting to new tasks



Distillation

[Hinton@W_NeurIPS15]

Adapting to new tasks from DINOv2

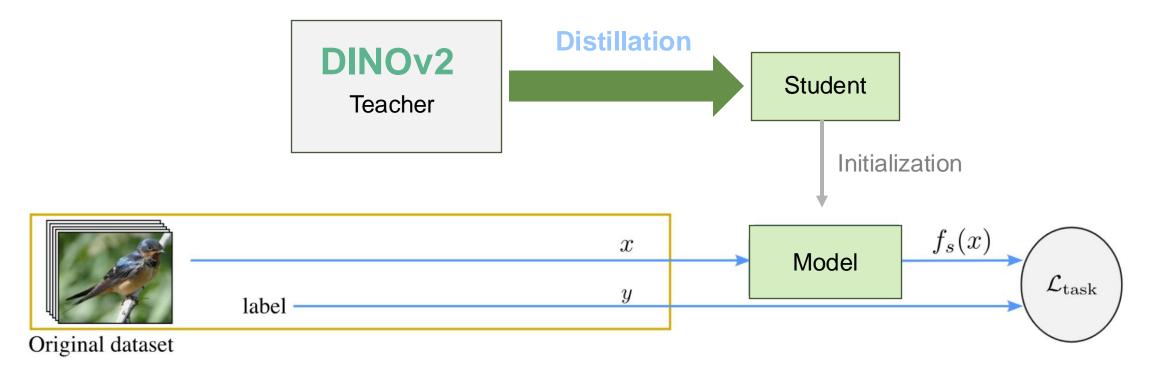


Task-agnostic distillation

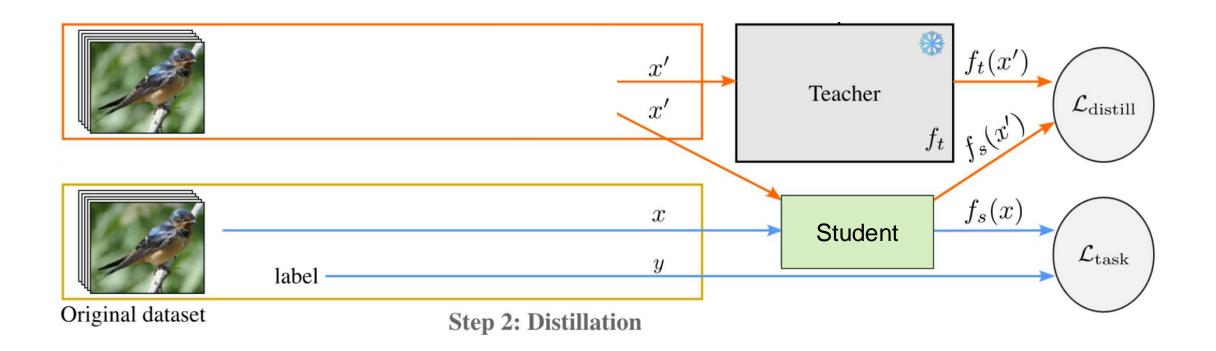
Step 1: reduce the teacher to the target architecture using distillation

Step 2: use this model to initialize the student

[Sun@EMNLP19] [Touvron@ICML21] [Beyer@CVPR22]



What should the teacher look like?

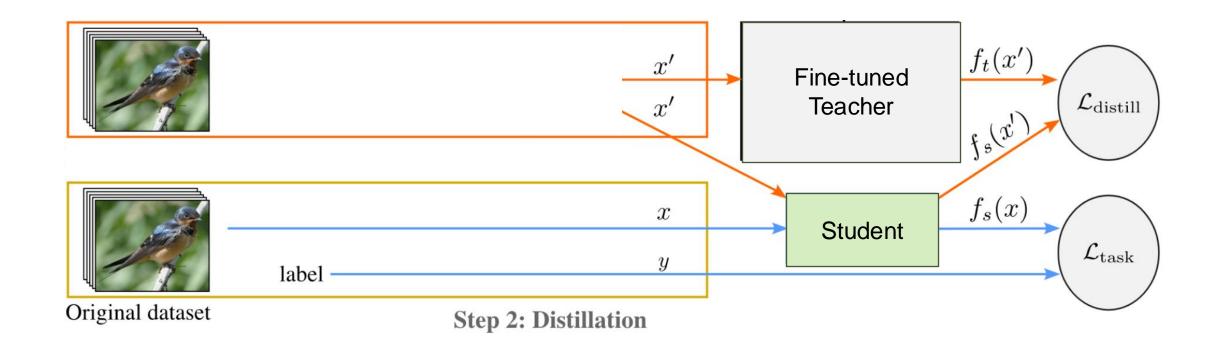


Standard strategy: fine-tune the teacher for the task

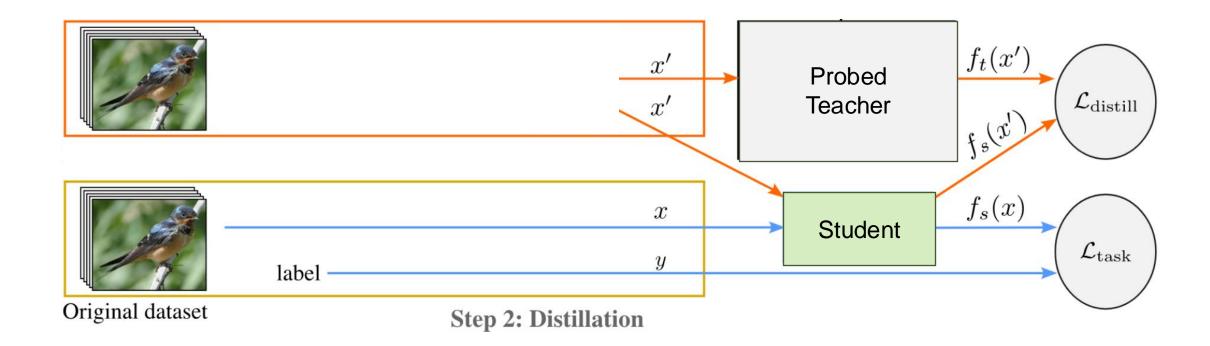
[Huang@CVPR23]

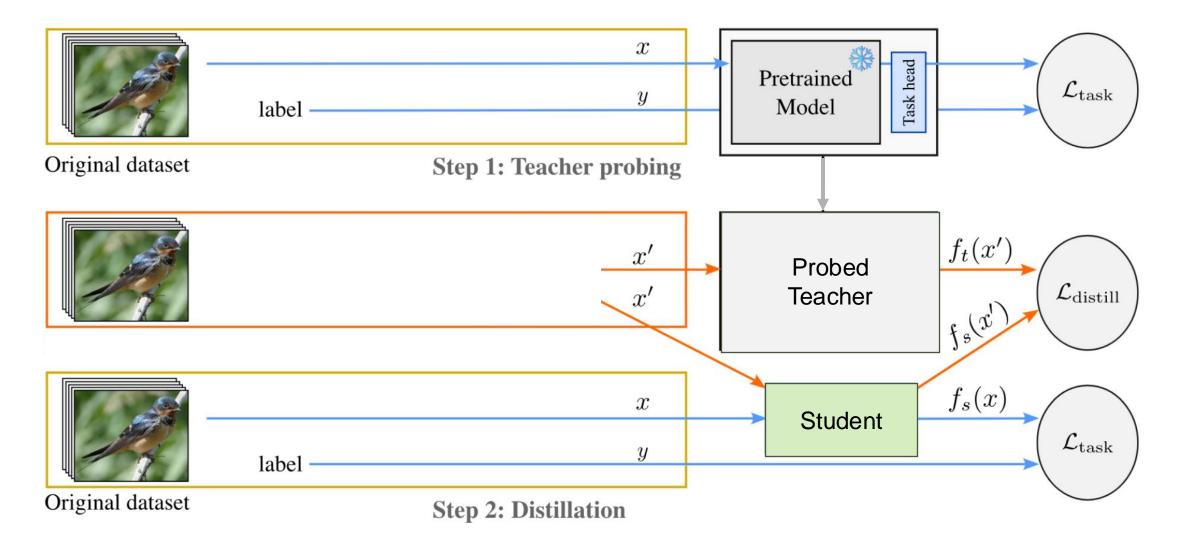
Issues

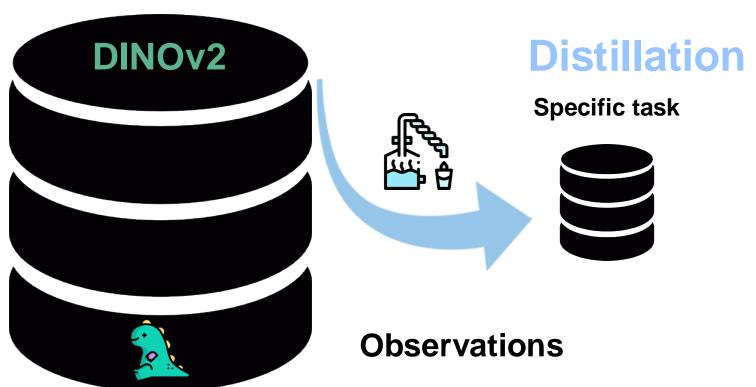
- Cost
- Not necessarily optimal



Proposed strategy: **probe** the teacher to the task

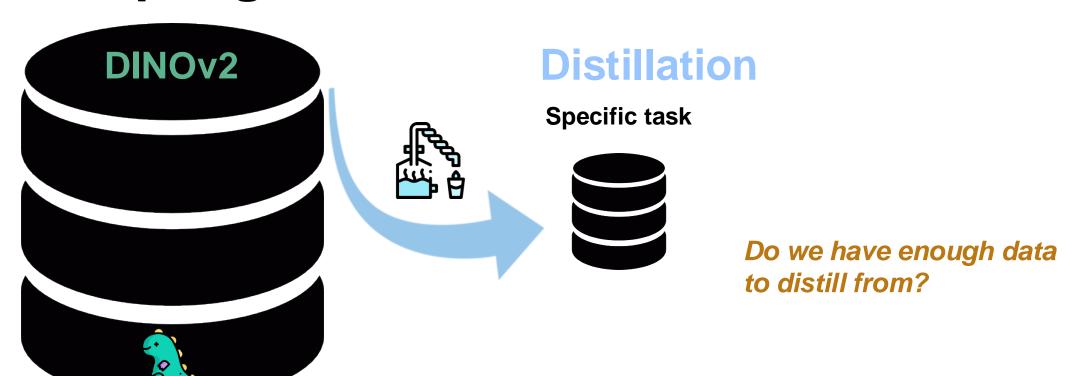


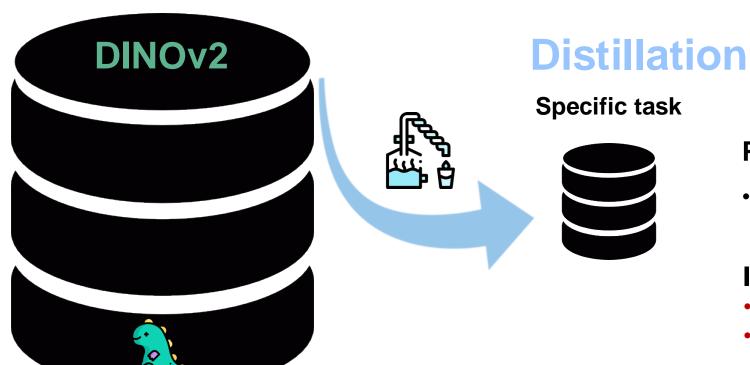




- Probing the teacher > Fine-tuning it
- Task-specific distillation complements Task-agnostic distillation
- Drastic model size changes are possible

[Marrie@TMLR24]





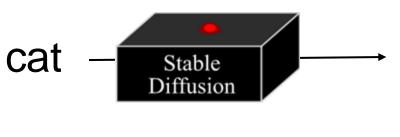
necific task

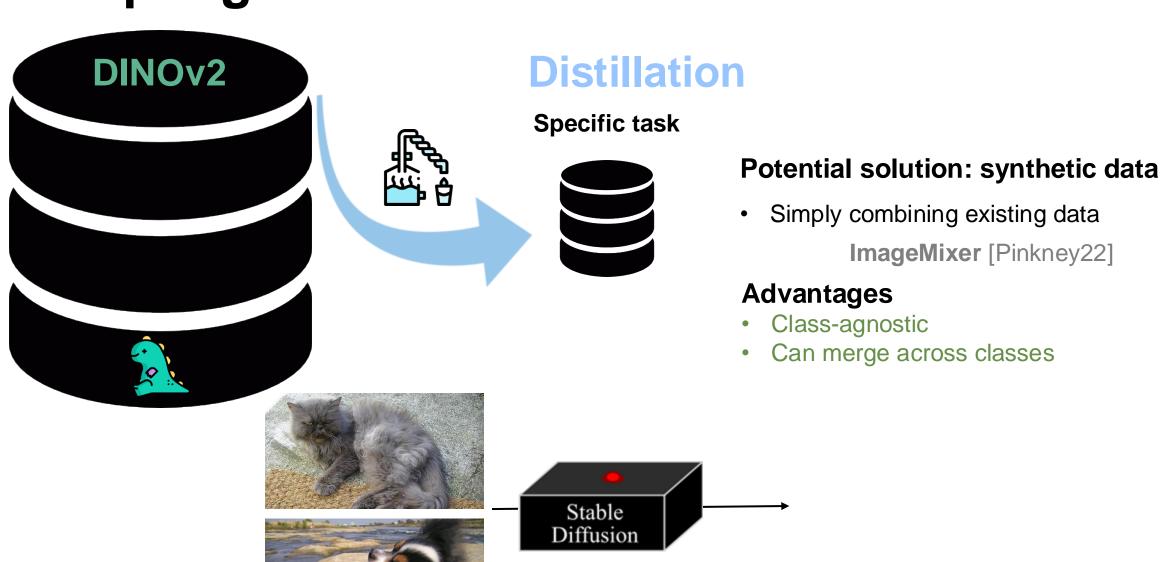
Potential solution: synthetic data

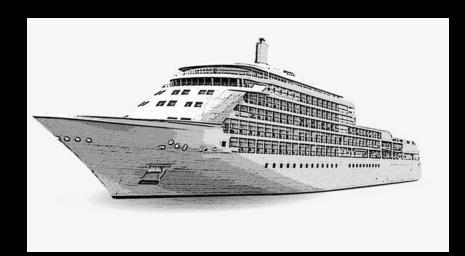
Use text-to-image generation
 Stable Diffusion [Rombach@CVPR22]

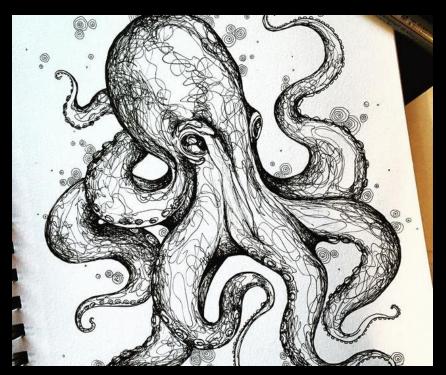
Issues

- Requires to know the class names
- Challenging beyond classification

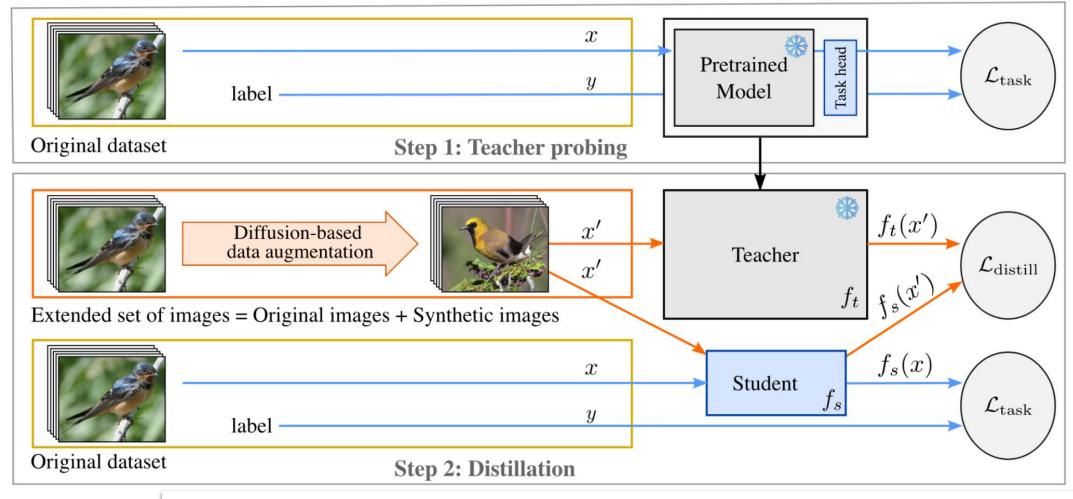








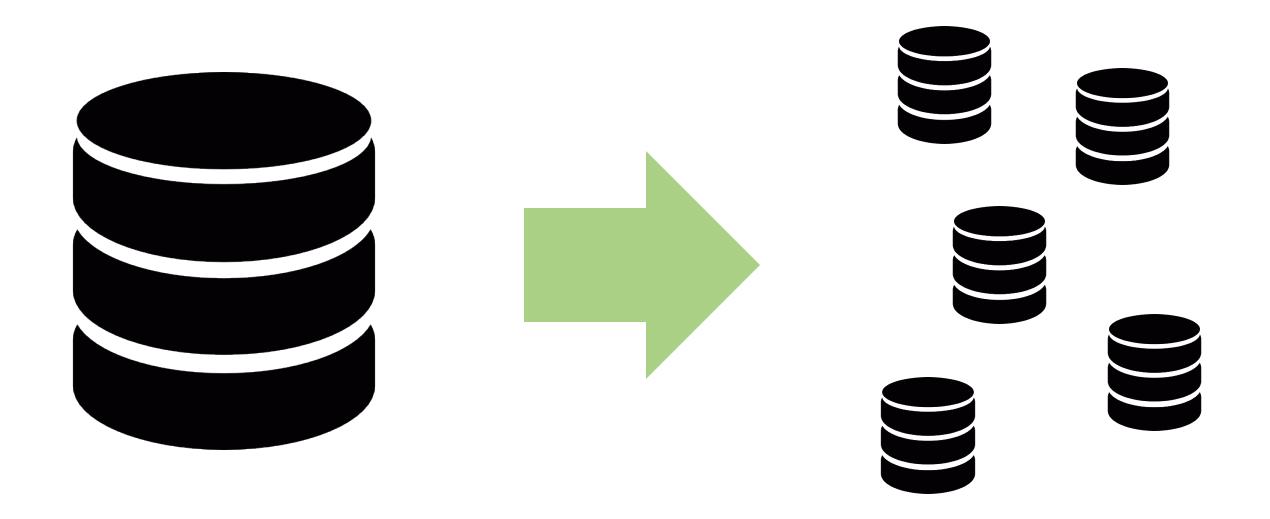
Final distillation pipeline

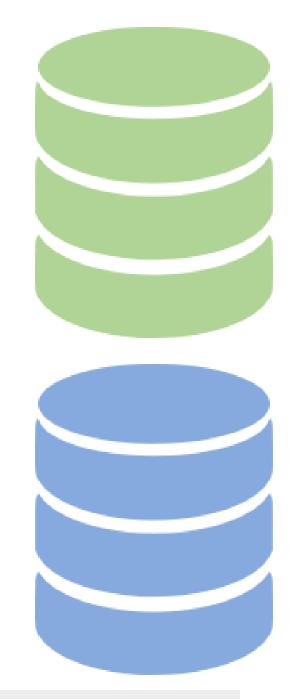


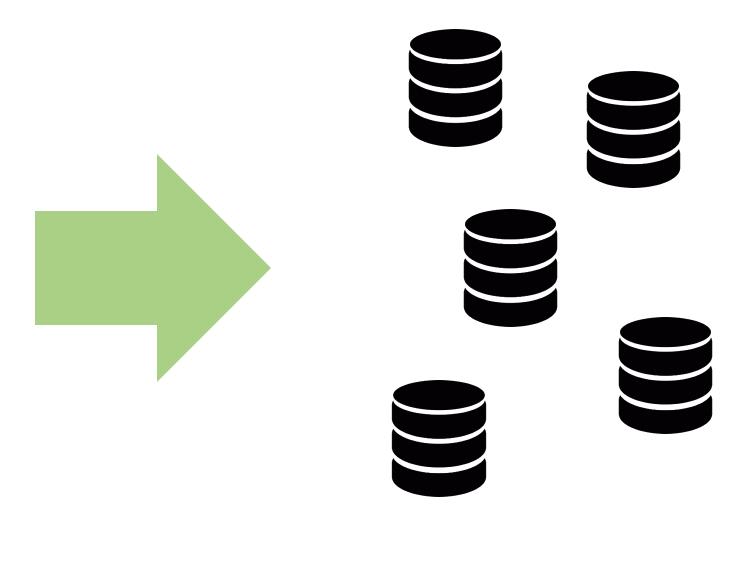
Reference

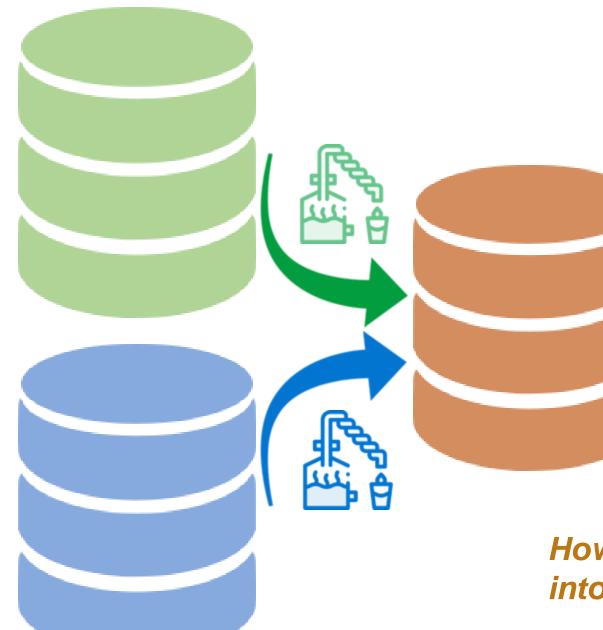
On Good Practices for Task-Specific Distillation of Large Pretrained Visual Models
Juliette Marrie, Michael Arbel, Julien Mairal, Diane Larlus
TMLR 2024

What if there are several complementary pretrained models to start from?







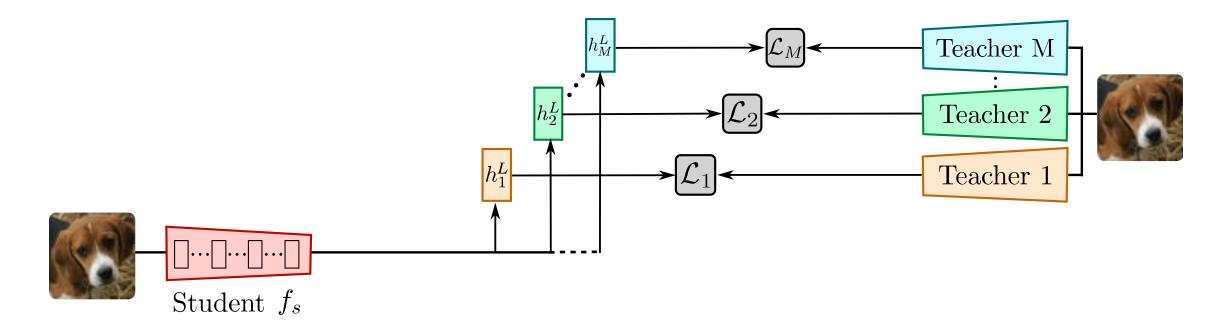


Multi-teacher distillation

How do we merge models into a unified pretrained model?

- Sum across teacher losses
- Teacher-specific expendable projectors

Multi-teacher distillation



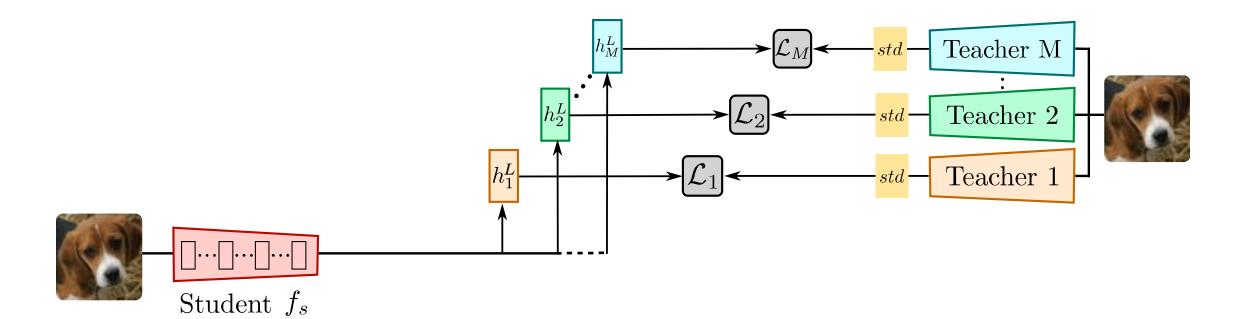
AM-RADIO [Ranzinger@CVPR24] UNIC [Sariyildiz@ECCV24]

- Sum across teacher losses
- Teacher-specific expendable projectors

Improvements

Feature standardization across teachers

Multi-teacher distillation

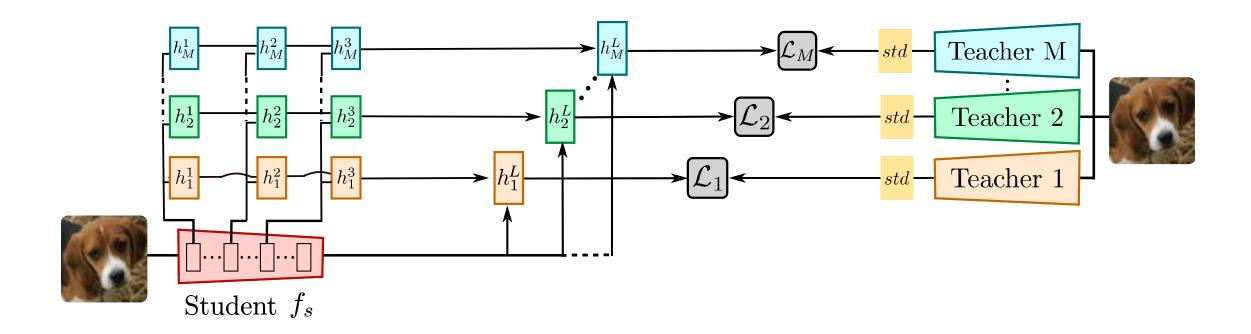


AM-RADIO [Ranzinger@CVPR24] UNIC [Sariyildiz@ECCV24]

- Sum across teacher losses
- Teacher-specific expendable projectors

Improvements

- Feature standardization across teachers
- Ladder of projectors: get input from intermediate layers



UNIC [Sariyildiz@ECCV24]

Multi-teacher distillation

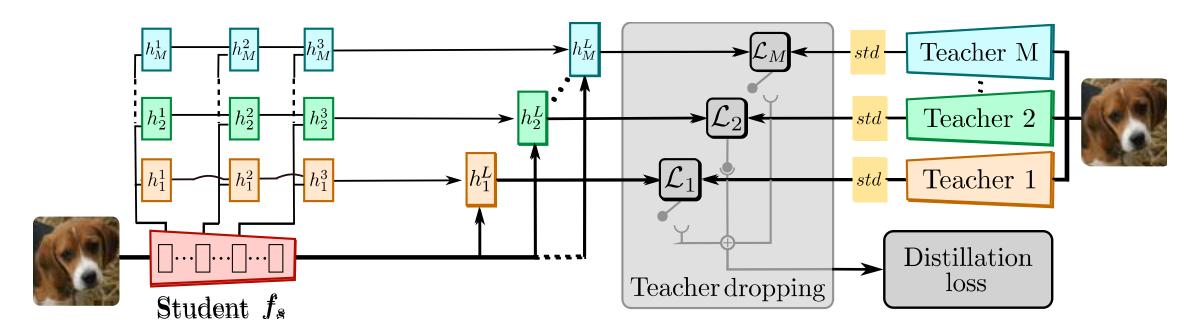
- Sum across teacher losses
- Teacher-specific expendable projectors

Improvements

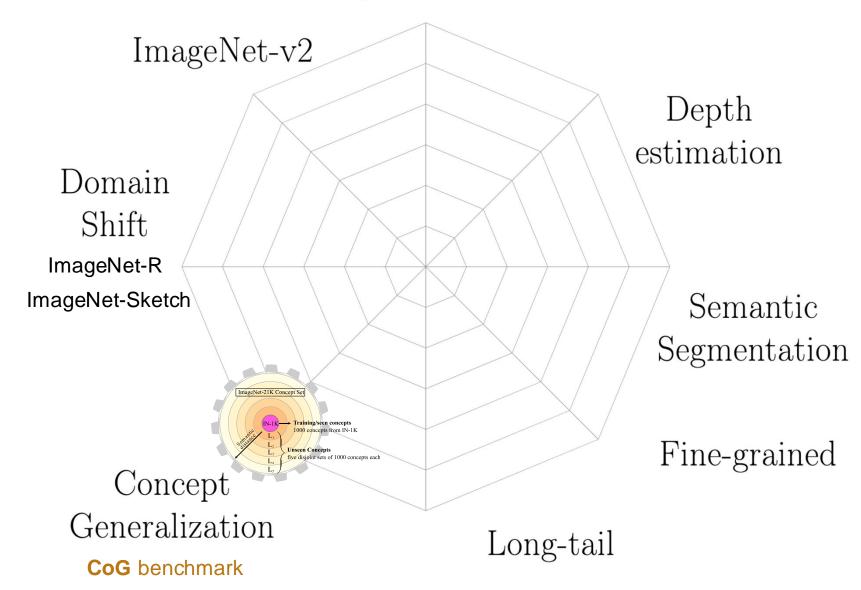
- Feature standardization across teachers
- Ladder of projectors: get input from intermediate layers
- Loss-based teacher dropping

Multi-teacher distillation

UNIC A UNIversal model for Classification



ImageNet-1K



UNIC [Sariyildiz@ECCV24]

Diane Larlus - VISIGRAPP 2025

ImageNet-1K

4 Teachers

• DINO [Caron@ICCV21]

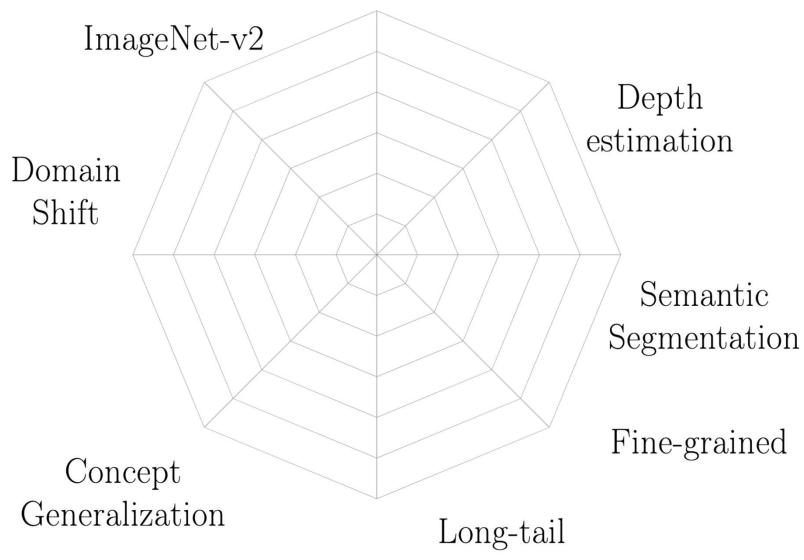
• iBoT [Shou@ICLR22]

• DeiT-III [Touvron@ECCV22]

dBoT-ft [Liu@ICLR22]

Setup

- ImageNet-1K
- ViT-Base + linear probing



4 Teachers

DINO

[Caron@ICCV21]

iBoT

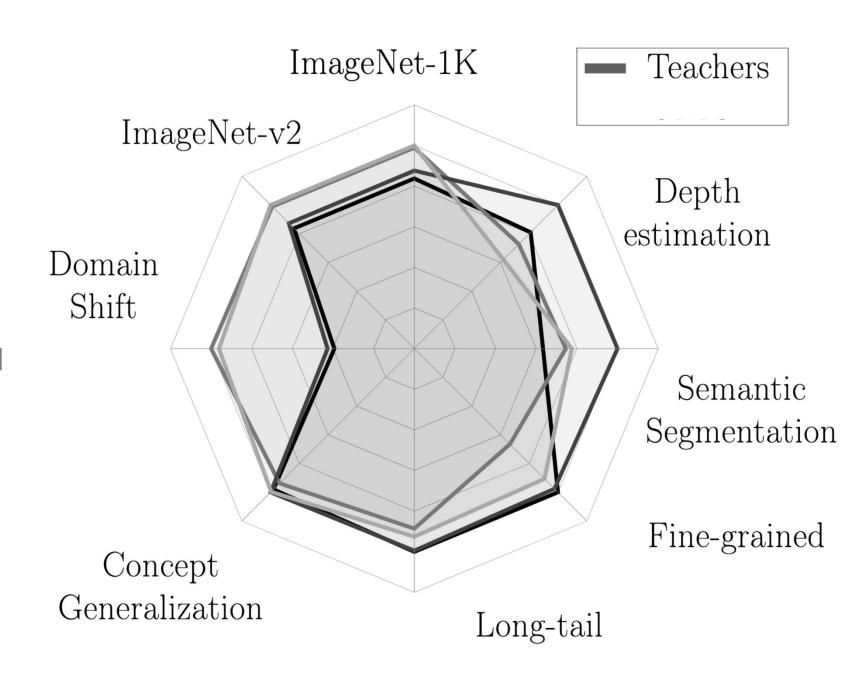
[Shou@ICLR22]

DeiT-III

[Touvron@ECCV22]

dBoT-ft

[Liu@ICLR22]



4 Teachers

DINO

[Caron@ICCV21]

iBoT

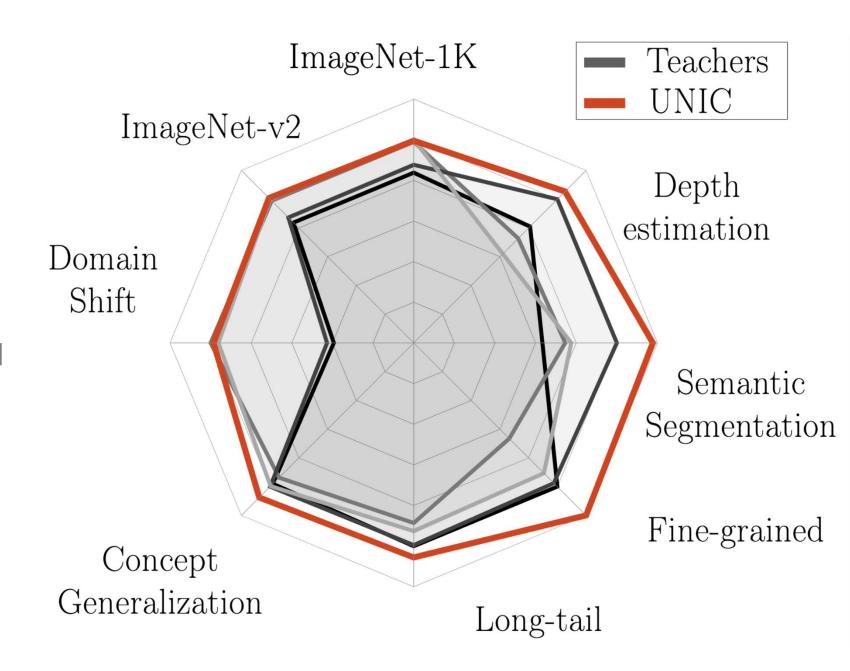
[Shou@ICLR22]

DeiT-III

[Touvron@ECCV22]

dBoT-ft

[Liu@ICLR22]



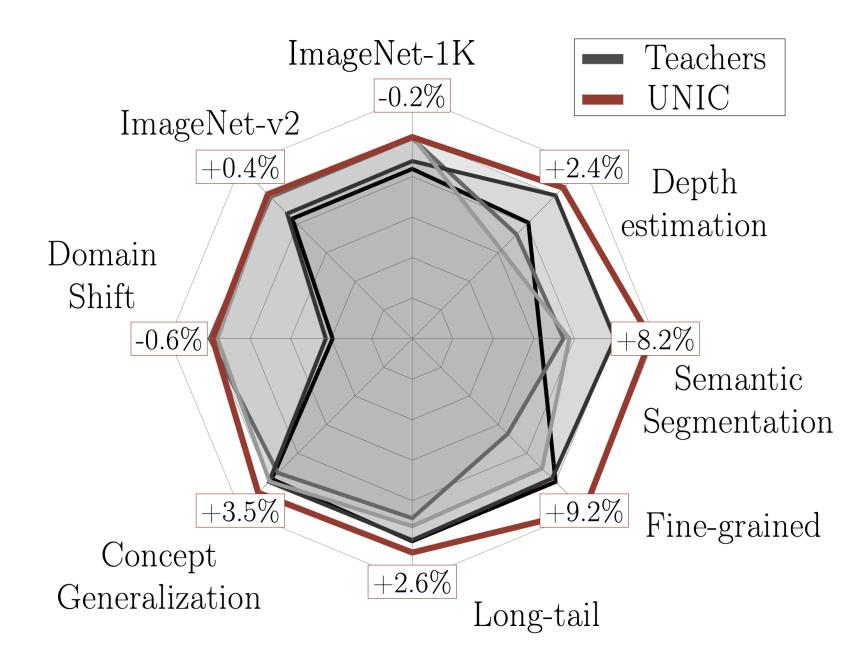
4 Teachers

DINO [Caron@ICCV21]

• iBoT [Shou@ICLR22]

• DeiT-III [Touvron@ECCV22]

dBoT-ft [Liu@ICLR22]

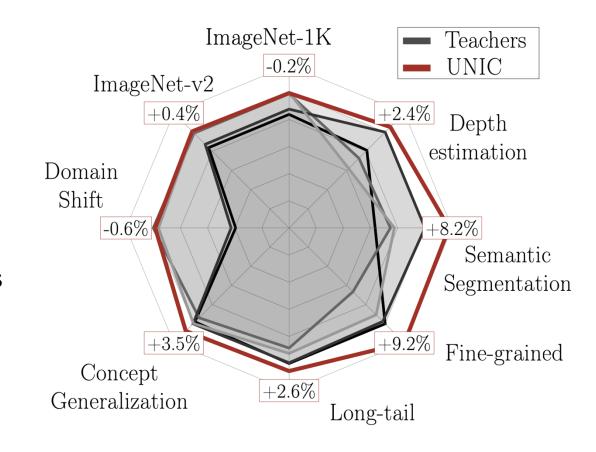


Take home message

Multi-teacher distillation

combines models with complementary strengths

UNIC is strong at image-level classification



Reference

UNIC: Universal Classification Models via Multi-Teacher Distillation

Mert Bülent Sariyildiz, Philippe Weinzaepfel, Thomas Lucas, Diane Larlus, Yannis Kalantidis

ECCV 2024

Conclusion & References

A few ideas to bring home

Lifelong learning is extremely relevant in computer vision ... and most likely beyond as well

Yet, it should be revisited in the light of large pretrained models

Large pretrained models

- ➤ If you would like to train one from scratch
 - Use everything you can (labels, text, etc.)
 - Beyond vision and language, more modalities could play a role
- ➤ If you would rather not
 - Mix, match, reuse existing model
 - Distillation is a powerful tool

Thanks!

Joint work with ..

Concept generalization in visual representation learning
Mert Bülent Sariyildiz, Yannis Kalantidis, Diane Larlus, Karteek Alahari
International Conference in Computer Vision (ICCV) 2021

No Reason for No Supervision: Improved Generalization in Supervised Models Mert Bülent Sariyildiz, Yannis Kalantidis, Karteek Alahari, Diane Larlus International Conference in Representation Learning (ICLR) 2023

Fake it till you make it: Learning transferable representations from synthetic ImageNet clones Mert Bülent Sariyildiz, Karteek Alahari, Diane Larlus, Yannis Kalantidis Conference in Computer Vision and Pattern Recognition (CVPR) 2023

On Good Practices for Task-Specific Distillation of Large Pretrained Visual Models Juliette Marrie, Michael Arbel, Julien Mairal, Diane Larlus Transactions on Machine Learning Research (TMLR) 2024

UNIC: Universal Classification Models via Multi-Teacher Distillation
Mert Bülent Sariyildiz, Philippe Weinzaepfel, Thomas Lucas, Diane Larlus, Yannis Kalantidis
European Conference on Computer Vision (ECCV) 2024

Credit icons: https://www.flaticon.com/free-icons

Bülent Sariyildiz

Karteek Alahari

Philippe Weinzaepfel

Yannis Kalantidis

Michael Arbel

Thomas Lucas

Julien Mairal

Thanks!

