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Abstract: Model-Driven Engineering (MDE) is a broad discipline concerned with curating all aspects of system design 
using models.  Model-Driven Architecture (MDA) is a highly publicised approach focusing on the generation 
of software systems from models.  However, MDA consists of a large collection of complex, interlocking 
standards, which together are difficult to master and have only partial implementations. This  motivated us to 
devise a much simpler language and toolset for MDE.  The result is ReMoDeL (Reusable Model Design 
Language), a pure functional object-oriented language for describing concepts and relationships.  ReMoDeL 
supports the creation of metamodels, models and model transformations.  It leverages skills already known to 
programmers, such as inheritance and pure functional mapping.  It integrates with any standard Java IDE and 
cross-compiles to Java, although ReMoDeL is more succinct (by 4x).  ReMoDeL’s pure functional 
transformations are in principle amenable to formal proof by induction.  Practically, it offers a convenient and 
fast way to prototype different metamodels and transformations.  We are using ReMoDeL to develop 
alternatives to UML and MDA (with different models and abstraction levels), with promising results.

1 INTRODUCTION 

Model Driven Engineering (MDE) has been an active 
field in Software Engineering since the early 2000s 
(Whittle, et al., 2014).  The goal is to enable the 
management of all aspects of systems design using 
models, abstractions of different views of the system, 
with the aim of increasing clarity and productivity.  
MDE encompasses many kinds of model translation, 
correction, refactoring and improvement, and reverse 
engineering of models from systems, whereas the 
subfield of Model-Driven Development (MDD) 
focuses more narrowly on the generation of systems 
from models (Mens & van Gorp, 2006, Biehl, 2010). 

1.1 Languages for MDE 

The best known proposal for MDD is the Object 
Management Group’s Model-Driven Architecture 
(OMG, 2014b), built on a large collection of 
standards, including the Unified Modeling Language 
(OMG, 2017), the Meta Object Facility (OMG, 
2016a), Query-View Transformation (OMG, 2016b), 
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the Object Constraint Language (OMG, 2014a), 
XML Metadata Interchange (OMG, 2015) and the 
Common Warehouse Metamodel (OMG, 2003).  
Whereas companies report using some of the OMG’s 
standards, such as UML and bespoke code translators 
to speed up development (Whittle, et al., 2017), there 
have been few complete implementations of the QVT 
model transformation standard.  SmartQVT (Alizon, 
et al., 2008) was a Java implementation of the QVT-
Operational language, not maintained since 2013.  
ModelMorf (TCS, 2007) implemented bidirectional 
transformations in the QVT-Relational language, 
with pattern matching, but has not survived.  Lano 
attributes this lack of traction to the complexity of the 
whole MDA project: 

“The problem with QVT-R is that large QVT-R 
specifications are difficult to write, understand or 
debug, and tend to have poor quality/high technical 
debt (including the Rel2Core transformation that 
appears in the standard itself)” (Lano, 2022). 

Other influential model transformation languages 
originally developed outside the OMG remit include: 
the  ATLAS Transformation Language (ATL) from 



INRIA, Nantes (Jouault, et al., 2008), a hybrid 
language with declarative and imperative aspects, 
Kermeta from IRISA, Rennes (Drey, et al., 2010), an 
object-oriented programming language with support 
for imperative model transformations, the Epsilon 
Transformation Language (ETL) from the University 
of York (Kolovos, et al., 2008), a hybrid model-to-
model transformation language with lazy, guarded 
and greedy rule scheduling.  Languages worthy of 
merit include UML-RSDS (Reactive Systems Design 
Support) from Kings College, London (Lano, 2016; 
2018), and Aocl (Batory & Altoyan, 2020), which 
support a declarative style of specification in OCL.  
Whereas Aocl extends OCL with mapping functions, 
UML-RSDS uses pure OCL, cleverly converted by a 
compiler into executable mapping transformations, 
and can generate code in Java, C, C++ and C#. 

Many of these languages have since migrated onto 
the Eclipse platform, to benefit from the graphical 
drawing tools and the Eclipse Modeling Framework 
(EMF) (Eclipse, 2008; 2021).  ATL, Kermeta, ETL 
and UML-RSDS (as AgileUML) have followed this 
route to seek wider adoption.  However, even one of 
the most complete Meta-CASE tools ever produced, 
XMF-Mosaic by the UK startup Xactium (Clark, et 
al., 2008) failed to capture the lasting interest of 
industry.  In hindsight, this was seen as due to 
language and tool designers “developing elegant tools 
for researchers, not pragmatic tools for engineers” 
(Clark and Muller, 2012; Whittle, et al, 2017). 

1.2 Simple Language for MDE 

Our own development of ReMoDeL sought to avoid 
creating similar barriers to adoption.  We have created 
a simple, declarative language in which designers can 
rapidly express sets of related concepts in a 
metamodel.  Metamodels are cross-compiled to Java 
packages, containing one class per concept, 
automating all the usual Java bookkeeping.  A model 
is an in-memory graph of instances of these classes, 
which can be read from, and serialised as text, in a 
format reminiscent of JSON (but not identical).   

A model transformation is expressed as a set of 
pure functional mapping rules from source to target.  
Each rule is idempotent (when applied multiple times 
to the same source element, it always maps to the 
same target element).  This promotes a desirable 
divide-and-conquer strategy of expressing rules in 
terms of simpler rules, without concerns for rule 
ordering or multiple firings.  A model transformation 
compiles to a Java class, which may either run as a 
main program, or may be chained together in a series 
of model transformations. 

A project in ReMoDeL consists of a new Java 
project in Eclipse (or other IDE), which has the 
ReMoDeL library on its build-path.  The project only 
needs a home package with a shell program to run the 
compiler, and thereafter all ReMoDeL files are placed 
in subfolders {meta, model, rule} of the main project 
folder.  This is all that is needed to get started. 

2 REMODEL SYNTAX 

The best way to present ReMoDeL is by example, and 
for this we use a popular “Hello World” introductory 
example found in the model transformation literature, 
the mapping between alternative tree- and graph-like 
representations of the same tree structure. 

2.1 InTree Metamodel 

Figure 1 illustrates an in-tree, a kind of tree in which 
every node refers to its parent node directly.  Such a 
structure may be represented as the following 
serialised model text. 

 
Figure 1: Model of an in-tree. 

model tree1 : InTree { 
   t1 : Tree(nodes = Node[ 
      n1 : Node(label = "Root"), 
      n2 : Node(label = "Branch1",  
                parent = n1), 
      n3 : Node(label = "Branch2",  
                parent = n1), 
      n4 : Node(label = "Leaf1",  
                parent = n2), 
      n5 : Node(label = "Leaf2",  
                parent = n2), 
      n6 : Node(label = "Leaf3",  
                parent = n3) 
   ]) 
} 

From this it should be clear that the Tree t1 
consists of a list of Nodes n1-n6, where most of these, 
apart from the root node, refer to their parent node.  
Every element of the model has a unique ID, such that 
they may refer to each other as desired.  The type-
declaration in the header tree1:InTree, states that the 
model tree1 is an instance of the metamodel InTree. 



 
Figure 2: Metamodel for an InTree. 

Figure 2 illustrates the metamodel for an InTree 
using the graphical syntax adopted for ReMoDeL.  
This repurposes some UML notation (for the sake of 
familiarity), in which a metamodel is contained in a 
region reminiscent of a UML package, and concepts 
are drawn in a style reminiscent of a UML class.  The 
same metamodel may also be expressed in the 
following textual format: 
metamodel InTree { 
   concept Node { 
      attribute label : String 
      reference parent : Node 
      operation isRoot : Boolean { 
         parent = null 
      } 
   } 
   concept Tree { 
      component nodes : Node[] 
      operation root : Node { 
         nodes.detect(node |  
                  node.isRoot) 
      } 
   } 
} 

From this it should be clear that the InTree 
metamodel consists of two concepts, Node and Tree.  
Node has an attribute label with a simple String type, 
and a weak reference to a parent Node.  Tree owns a 
component list of Nodes; the list type is indicated by 
the square brackets following the Node type name. 

Concepts may also have pure functional 
operations (parameters are optional), which return the 
value of their body expression.  So, Node is able to 
determine if it is the root node, and Tree is able to 
filter its nodes to find the root node using detect, a 
higher-order filtering operation, whose lambda-
expression tests each owned node in turn and returns 
the first found root node. 

 
 
 

2.2 Graph Metamodel 

Figure 3 illustrates an alternative graph representation 
for a tree-like structure, in which the vertices and 
edges are modelled explicitly as separate concepts.  
Such a structure may be represented in the following 
serialised model text. 

 
Figure 3: Model of a graph. 

model graph1 : Graph { 
 g1 : Graph(vertices = Vertex[ 
   v1 : Vertex(label = "Root"), 
   v2 : Vertex(label = "Branch1"), 
   v3 : Vertex(label = "Branch2"), 
   v4 : Vertex(label = "Leaf1"), 
   v5 : Vertex(label = "Leaf2"), 
   v6 : Vertex(label = "Leaf3") 
 ], edges = Edge[ 
   e1 : Edge(source = v2, target = v1), 
   e2 : Edge(source = v3, target = v1), 
   e3 : Edge(source = v4, target = v2), 
   e4 : Edge(source = v5, target = v2), 
   e5 : Edge(source = v6, target = v3), 
 ]) 
} 

From this, it should be clear that the Graph g1 
consists of a list of Vertices v1-v6 and a list of Edges 
e1-e5.  Each Vertex is labelled, and each Edge 
connects a given source and target Vertex. 

 
Figure 4: Metamodel for a Graph. 

Figure 4 illustrates the metamodel for a Graph 
using the ReMoDeL graphical notation.  This defines 
the structure expressed above, which is obeyed by the 



model instance graph1:Graph.  The same metamodel 
may also be expressed in textual format (Graph 
unambiguously names the metamodel and a concept): 
metamodel Graph { 
   concept Graph { 
      component vertices : Vertex[] 
      component edges : Edge[] 
      operation root : Vertex { 
         vertices.detect(vertex | 
            not edges.exists(edge |  
               edge.source = vertex)) 
      } 
   } 
   concept Vertex { 
      attribute label : String 
   } 
   concept Edge { 
      reference source : Vertex 
      reference target : Vertex 
   } 
} 

There are three concepts:  Graph, which consists 
of lists of Vertices and Edges, Vertex, which has a 
simply-typed label attribute, and Edge, which has two 
references to its source and target Vertex.   

The Graph operation to find the root vertex looks 
a little more involved than for the InTree case, but 
should be well understood by anyone familiar with 
pure functional programming:  the root operation 
filters the vertices to detect a unique Vertex satisfying 
a given property, which is that there should not exist 
any Edge, whose source is that Vertex.  Such a Vertex 
must be a root. 

2.3 Model Transformation 

Model transformations in ReMoDeL are provided as 
text files in the following format: 
transform InTreeToGraph : Trees { 

 metamodel source : InTree 
 metamodel target : Graph 
 
 mapping inTreeToGraph (inTree :  
      InTree_Tree) : Graph_Graph { 
  create Graph_Graph( 
    vertices :=  
      inTree.nodes.collect(node |  
               inNodeToVertex(node)), 
    edges :=  
      inTree.nodes 
        .without(inTree.root) 
        .collect(node |  
               inNodeToEdge(node)) 
 } 

 mapping inNodeToVertex(inNode :  
      InTree_Node) : Graph_Vertex { 

  create Graph_Vertex( 
    label := inNode.label 
  ) 
 } 
 
 mapping inNodeToEdge (inNode :  
      InTree_Node) : Graph_Edge { 
   create Graph_Edge( 
     source := inNodeToVertex(inNode), 
     target := inNodeToVertex( 
                 inNode.parent) 
   ) 
 } 
} 

The transformation is named InTreeToGraph and 
belongs to the transformation group Trees.  The next 
lines introduce the source and target metamodels, 
saying that the transformation maps a source:InTree 
to a target:Graph.  The transformation consists of 
three mapping rules:  inTreeToGraph is the top-level 
rule (ordered first), which invokes subsidiary rules 
inNodeToVertex and inNodeToEdge. 

The simplest rule inNodeToVertex takes an 
argument of the kind:  InTree_Node and gives a result 
of the kind:  Graph_Vertex.  The concept-names are 
prefixed by their owning metamodel, since the source 
and target metamodels may sometimes contain 
concepts having the same name.  The body of the rule 
creates a Graph_Vertex, whose label is initialised to 
the same value as that of the supplied inNode. 

Similarly, the rule inNodeToEdge takes an 
argument of the kind InTree_Node and creates a 
result of the kind Graph_Edge.  This rule invokes the 
previous rule to map the supplied inNode to its 
source, and the parent of this node to its target. 

Finally, inTreeToGraph creates a Graph, whose 
vertices are obtained by mapping inNodeToVertex 
over the inTree.nodes, and whose edges are obtained 
by mapping inNodeToEdge over all but one of the 
inTree.nodes, the root node, which is excluded from 
the list by without, a pure functional list removal 
operation that returns a copy of the list without the 
specified element. 

The higher-order mapping operation collect 
accepts a lambda-expression as its argument.  This 
consists of a lambda-variable (here, node) separated 
by a vertical stroke from the lambda-body, which can 
be any expression including the lambda-variable.  
The effect of invoking collect on a list is to apply the 
lambda-expression to every node in the list, and 
collect a new list of the mapped results. 

 
 
 
 



3 REMODEL SEMANTICS 

ReMoDeL was designed to have a semantics based 
on pure functional programming semantics, for the 
sake of formal clarity.  No operation, nor any rule, 
actually modifies any data structure destructively.  

3.1 Properties of Transformations 

A model transformation is a pure functional mapping 
from a source to a target model.  The whole target is 
always created afresh by the transformation.  Rules 
are completely declarative, stating exactly how to 
build the target in a compositional way using simpler 
rules.  This brings certain desirable properties. 

Firstly, no other part of the source or target model 
is modified by any mapping rule.  This avoids hard 
problems found in languages with imperative updates 
to models, such as the hybrid languages ATL 
(Jouault, et al., 2008) and ETL (Kolovos, et al., 2008), 
in which it becomes important to control the order of 
rule-firing, so that target models are modified in some 
appropriate sequential order. 

Secondly, rules are idempotent, mapping every 
element exactly once.  Consider the number of times 
the rule inNodeToVertex is called on any given node.  
It is called once on every node by inTreeToGraph 
when creating the list of Vertices.  It is called again 
by inNodeToEdge on all paired nodes connected by 
edges.  During the whole model transformation, the 
InNode n2 is given as an argument to inNodeToVertex 
on four separate occasions:  once when being mapped 
to the Vertex v2, once when creating the Edge e1, and 
twice more when creating the Edges e3 and e4.  The 
idempotent property ensures that exactly one copy of 
the target Vertex v2 is created, returning the same 
instance for all invocations. 

Thirdly, models are constrained to be directed 
acyclic graphs (DAGs), to ensure that transformations 
always terminate.  If a model were to contain cycles, 
then rules would call each other in infinite regress.  
But since it is sometimes profoundly useful to have 
back-references, especially to avoid passing the 
whole model as an extra argument to a rule, 
ReMoDeL allows any component to have a hidden 
back-reference called owner, which is set implicitly 
when the component is added to its master.  Back-
references are not mapped by transformations, and 
they are not serialised when a model is saved. 

Fourthly, each transformation is unidirectional, 
describing a mapping in one direction only.  This does 
not preclude defining an inverse transformation, to 
map the target back to the source.  It is possible to 
write an inverse transformation GraphToInTree, 

which maps a graph-representation of a tree back to 
the original in-tree representation.  However, the 
astute reader will have realised that a graph is a 
strictly more general kind of representation, since it 
may have more than one root node at the head of the 
DAG.  Such a graph cannot be mapped (without loss) 
back to a tree.  It is possible to define partial 
transformations in ReMoDeL. 

While we have only shown an example of a 
mapping transformation, it is also possible to create 
merging transformations.  These have more than one 
source metamodel and construct a target that blends 
information from both of the sources.  An updating 
transformation is merely a mapping transformation 
that constructs a new instance of the target model.  
Both mapping and merging rules are idempotent, but 
for a merging rule, this is judged on the basis of a 
tuple of inputs from the source metamodels.  
Occasionally, it is desired to have a kind of rule that 
always constructs a new instance of the result.  For 
this, ReMoDeL provides function rules, which map 
without idempotence. 

Finally, for the more mathematically-inclined, 
ReMoDeL transformations have an interpretation 
within Category Theory as homomorphisms between 
general abstract datatype algebras.  The individual 
mapping rules are morphisms, mappings between 
source and target elements of the algebras.  This 
property is entailed by the fact that any kind of source 
or target metamodel, expressed in the concept-
language, may ultimately be generalised as the “same 
kind” of abstract datatype algebra. 

3.2 Properties of Metamodels 

ReMoDeL was designed to be a conceptual modelling 
language, rather than a full programming language.  
A concept in ReMoDeL denotes any kind of modelled 
structural or behavioural entity that possesses a 
number of properties.  The properties can only be 
drawn from the following kinds: 

• An attribute – with a simply-typed value; 
• A reference – referring to another concept 

(or list, or set) in the same metamodel; 
• A component – a strong reference implying 

ownership of the related concept; 
• An operation – a pure functional operation, 

to filter or access part of a concept. 

Attributes have simple types taken from the set: 
{Boolean, Character, Integer, Decimal, String}.  All 
references are directed, to preserve the DAG quality 
of models (see above).  A component is a stronger 
kind of reference, meaning that the source concept 



owns the target concept.  It also supports the implicit 
owner back-reference (see above).  The intended 
difference in the semantics is that if an instance of a 
concept is deleted, it may simply forget its references, 
whereas its components should be deleted recursively 
in a cascading fashion.  (This would support a future 
implementation of ReMoDeL in C++, which must 
manage the allocation of components explicitly). 

ReMoDeL operations are without side-effects.  
They typically either query their owning concept to 
filter its stored properties for a subset of these, or they 
compute some kind of derived result.  The modeller 
adds such query operations to a concept as needed, 
usually to make the process of writing a model 
transformation simpler. 

ReMoDeL allows inheritance between concepts.  
A derived concept may inherit a base concept in its 
opening declaration (before the set of properties).  
The derived concept obtains all the properties of the 
base concept, but may override some by redefining 
them.  A redefined reference or component may 
restrict the type of concept to which it refers.  An 
operation may restrict its result type and may also 
replace its function body.  This supports dynamic 
binding.  ReMoDeL also allows inheritance between 
metamodels.  A derived metamodel may inherit a 
base metamodel in its opening declaration (before the 
set of concepts).  The semantics is similar to 
importing from a remote package, except that it is 
possible to override an inherited concept with a 
redefinition of that concept.  Together, these features 
justify the acronym ReMoDeL (Reusable Model 
Design Language). 

3.3 Properties of Expressions 

ReMoDeL has an extensive expression language.  It 
supports the Boolean constants:  false, true and the 
operations and, or and not.  It supports the empty 
reference null.  It supports the six inequalities and a 
full range of arithmetic operators, including divide, 
modulo and exponent.  It offers a ternary conditional 
if – then – else – which returns the value of one or 
other branch.  It offers a range of standard String 
operations, which support searching, substring 
extraction, concatenation and case conversion, which 
is useful in rules that relate names and types of things.  

As well as the basic types and concept types, 
ReMoDeL has pure functional list and set types.  
These are defined by appending [] or {} onto any type 
identifier, to denote respectively a list, or a set of that 
type.  Any concept may use asList or asSet to convert 
it into a singleton of that type (when applied to 
collections, these may convert the collection-type).  

Lists and sets offer the common operations:  isEmpty, 
size, has, count, with and without.  Sets offer union, 
intersection, difference with the usual semantics and 
a pick operation for the axiom of choice, to select an 
arbitrary set element.  Lists are ordered and offer first, 
rest and append with the usual semantics. 

One of the most important and useful features of 
lists and sets is that they offer the following higher-
order operations, which perform quantification, 
filtering, mapping and reduction on collections.  Each 
of these has a lambda-expression as its argument: 

• Exists(x | predicate(x)) – returns true if any 
element satisfies the predicate; 

• Forall(x | predicate(x)) – returns true if all the 
elements satisfy the predicate; 

• Detect(x | predicate(x)) – returns the first 
element satisfying the predicate; 

• Select(x | predicate(x)) – returns those 
elements that satisfy the predicate 

• Reject(x | predicate(x)) – returns those 
elements that fail to satisfy the predicate 

• Collect(x | function(x)) – constructs a list (or 
set) of the result of applying the function to 
every element of the list (or set). 

• Collate(x | function(x)) – appends a list (or 
unions a set) of the list- (or set-) results of 
applying the function to every element of the 
list (or set). 

• Reduce(x, y | reduction(x, y)) – constructs a 
single value by combining all elements. 

 

These operations are sensitive to the kind of 
collection on which they are invoked, and may return 
a collection of the same kind (whether a list, or a set).  
Filtering a heterogeneously typed collection may 
specify a more homogeneously typed result, which is 
useful, since the result’s elements are automatically 
down-cast to the specific type, which may offer 
access to more specific operations. 

The difference between the collect and collate 
operations is that collect expects the mapped function 
to return a single object, whereas collate expects the 
mapped function to return a list (or set), which must 
then be flattened.  The reduce operation is a limited 
kind of left-fold reduction:  if the collection is empty, 
it returns null; if the collection is a singleton, it returns 
that element; otherwise, it applies the binary 
reduction to combine multiple elements of the 
collection.  This can be used to find the sum of a list, 
or the greatest element of a set, for example. 

For further information about the expression 
language, the reader is invited to consult the report 
ReMoDeL Explained (Simons, 2023a).  For further 
information about the cross-compilation model and 
how this preserves the semantics of the language, the 



reader is invited to consult the report ReMoDeL 
Compiled (Simons, 2023b). 

4 REMODEL IN PRACTICE 

ReMoDeL has been trialled in a number of student 
projects at the University of Sheffield.  The learners 
are students on Computer Science undergraduate or 
postgraduate master’s programmes.  They undertake 
different kinds of model transformation problems in 
different conceptual domains. 

4.1 Learning ReMoDeL 

Undergraduates typically have a strong background in 
Java programming and one semester’s exposure to 
functional programming in Haskell. Master’s students 
may not have had functional programming experience.  
We find that the undergraduates adapt quickly to the 
pure functional style of transformation rules, although 
master’s students also acquire this skill eventually.  
Once the idempotent property of mapping rules is 
understood, students soon adapt to the declarative 
divide-and-conquer style of mapping transformations. 

A second acquired skill is in learning how to 
construct a suitable metamodel for the conceptual 
domain in question, especially how to factor out 
common features of different concepts in a concept 
hierarchy.  This usually comes more easily to those 
with longer object-oriented programming experience, 
especially if they are familiar with refactoring classes 
in a class hierarchy. 

Using ReMoDeL within a standard Java IDE (we 
have used Eclipse, IntelliJ IDEA and NetBeans) can 
present challenges for some who have never managed 
a Java project with an external library.  Students learn 
about configuring the build-path of their project.  
Another skill is to keep the state of the IDE consistent.  
For example, Eclipse monitors the state of a Java 
project using metadata on its files and dependencies, 
which are updated only by the IDE’s tools.  Since 
ReMoDeL may independently create files and whole 
Java packages in a separate thread, it is possible for 
the metadata to become stale.  In this case, the user 
must remember to refresh the project frequently. 

4.2 Problem Domains 

Another test of ReMoDeL is in seeing what kinds of 
problem domains it can be applied to with success.  
One of the first full-strength problems on which we 
tested its power to conceptualise domain models and 
capture complex chains of transformations was the 

UML to SQL transformation problem.  This involved 
creating separate metamodels for the UML Class 
Diagram, the traditional Entity-Relationship Model, a 
normalised Object Dependency Graph, and an SQL 
Database Model capturing data definitions. 

We developed a chain of transformations that 
could start either with UML, or a traditional ERM.  
UMLtoERM converted a class diagram into an ERM, 
in which UML’s special semantic relationships 
generalisation, aggregation and composition, were 
mapped with associations to general relationships.  
ERMtoNorm normalised the ERM to 3NF, merging 
all entities connected one-to-one, splitting many-to-
many relationships by introducing linker entities, and 
redirecting any affected relationships.  NormToEDG 
converted all edges into directed, named references 
from the dependent to the master type.  EDGtoSQL 
mapped all object types to tables, all attributes to 
columns, and all references to additional renamed 
columns, constructing primary and foreign keys that 
grouped these appropriately.  For a complete account 
of this project, the reader is invited to refer to the 
technical reports (Simons, 2022a; 2022b). 

4.3 Code Generation 

To finish off the transformation chain, we wrote a 
simple code generator, to output SQL Data Definition 
Language from the final SQL Database model.  This 
was achieved using a hand-written Java code 
generator class that followed the Visitor Design 
Pattern (Gamma, et al., 1995).  An abstract Visitor 
was defined in the SQL Database metamodel, which 
compiled to a Java class.  The hand-written code 
generator was a subclass of this Visitor, overriding the 
trivial method signatures.  In this way, the metamodel 
could be recompiled without overwriting the hand-
written generator methods. 

5 CONCLUSIONS 

We have succeeded in designing a fresh model 
transformation language, with a succinct syntax and 
clean semantics, and with a small runtime library that 
integrates easily with existing Java IDEs.  Our initial 
experiments have shown that new users adapt rapidly 
to the language and compiler tools. 

What is pleasing is that their focus of attention 
shifts to solving the real conceptual modelling and 
model transformation problems, rather than having to 
spend all their time understanding and fixing issues 
with the transformation architecture (Lano, 2022) or 
tools (Whittle, et al., 2017).  A similar goal motivates 



the designers of DSL tools, such as MPS (JetBrains, 
2024).  But ReMoDeL is a general-purpose, rather 
than a domain-specific, modelling language. 

Our future work arises out of different student 
projects, in which we have been able to explore new 
alternatives to UML, including a Task Model of 
clustered tasks and actors which are transformed into 
the State Model of the target system’s GUI with 
authorisation (a transformation of system behaviour), 
or a simple Impact Model showing the CRUD effects 
of Tasks upon Objects, offering completeness checks 
on object lifecycles.  These serve a good basis for 
cross-checking and refinement; we will extend and 
develop this family of models, which we tentatively 
name μML (the micro-Modelling Language). 
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