
ReMoDeL: A Pure Functional Object-Oriented Concept Language
for Models, Metamodels and Model Transformation

Anthony J. H. Simons a
School of Computer Science, University of Sheffield, Regent Court, 211 Portobello, Sheffield S1 4DP, U.K.

a.j.simons@sheffield.ac.uk

Keywords: Model-Driven Engineering, Models, Metamodels, Model Transformation, Pure Functional, Object-Oriented,
Concepts, Relationships, ReMoDeL.

Abstract: Model-Driven Engineering (MDE) is a broad discipline concerned with curating all aspects of system design
using models. Model-Driven Architecture (MDA) is a highly publicised approach focusing on the generation
of software systems from models. However, MDA consists of a large collection of complex, interlocking
standards, which together are difficult to master and have only partial implementations. This motivated us to
devise a much simpler language and toolset for MDE. The result is ReMoDeL (Reusable Model Design
Language), a pure functional object-oriented language for describing concepts and relationships. ReMoDeL
supports the creation of metamodels, models and model transformations. It leverages skills already known to
programmers, such as inheritance and pure functional mapping. It integrates with any standard Java IDE and
cross-compiles to Java, although ReMoDeL is more succinct (by 4x). ReMoDeL’s pure functional
transformations are in principle amenable to formal proof by induction. Practically, it offers a convenient and
fast way to prototype different metamodels and transformations. We are using ReMoDeL to develop
alternatives to UML and MDA (with different models and abstraction levels), with promising results.

1 INTRODUCTION

Model Driven Engineering (MDE) has been an active
field in Software Engineering since the early 2000s
(Whittle, et al., 2014). The goal is to enable the
management of all aspects of systems design using
models, abstractions of different views of the system,
with the aim of increasing clarity and productivity.
MDE encompasses many kinds of model translation,
correction, refactoring and improvement, and reverse
engineering of models from systems, whereas the
subfield of Model-Driven Development (MDD)
focuses more narrowly on the generation of systems
from models (Mens & van Gorp, 2006, Biehl, 2010).

1.1 Languages for MDE

The best known proposal for MDD is the Object
Management Group’s Model-Driven Architecture
(OMG, 2014b), built on a large collection of
standards, including the Unified Modeling Language
(OMG, 2017), the Meta Object Facility (OMG,
2016a), Query-View Transformation (OMG, 2016b),

a https://orcid.org/0000-0002-5925-7148

the Object Constraint Language (OMG, 2014a),
XML Metadata Interchange (OMG, 2015) and the
Common Warehouse Metamodel (OMG, 2003).
Whereas companies report using some of the OMG’s
standards, such as UML and bespoke code translators
to speed up development (Whittle, et al., 2017), there
have been few complete implementations of the QVT
model transformation standard. SmartQVT (Alizon,
et al., 2008) was a Java implementation of the QVT-
Operational language, not maintained since 2013.
ModelMorf (TCS, 2007) implemented bidirectional
transformations in the QVT-Relational language,
with pattern matching, but has not survived. Lano
attributes this lack of traction to the complexity of the
whole MDA project:

“The problem with QVT-R is that large QVT-R
specifications are difficult to write, understand or
debug, and tend to have poor quality/high technical
debt (including the Rel2Core transformation that
appears in the standard itself)” (Lano, 2022).

Other influential model transformation languages
originally developed outside the OMG remit include:
the ATLAS Transformation Language (ATL) from

INRIA, Nantes (Jouault, et al., 2008), a hybrid
language with declarative and imperative aspects,
Kermeta from IRISA, Rennes (Drey, et al., 2010), an
object-oriented programming language with support
for imperative model transformations, the Epsilon
Transformation Language (ETL) from the University
of York (Kolovos, et al., 2008), a hybrid model-to-
model transformation language with lazy, guarded
and greedy rule scheduling. Languages worthy of
merit include UML-RSDS (Reactive Systems Design
Support) from Kings College, London (Lano, 2016;
2018), and Aocl (Batory & Altoyan, 2020), which
support a declarative style of specification in OCL.
Whereas Aocl extends OCL with mapping functions,
UML-RSDS uses pure OCL, cleverly converted by a
compiler into executable mapping transformations,
and can generate code in Java, C, C++ and C#.

Many of these languages have since migrated onto
the Eclipse platform, to benefit from the graphical
drawing tools and the Eclipse Modeling Framework
(EMF) (Eclipse, 2008; 2021). ATL, Kermeta, ETL
and UML-RSDS (as AgileUML) have followed this
route to seek wider adoption. However, even one of
the most complete Meta-CASE tools ever produced,
XMF-Mosaic by the UK startup Xactium (Clark, et
al., 2008) failed to capture the lasting interest of
industry. In hindsight, this was seen as due to
language and tool designers “developing elegant tools
for researchers, not pragmatic tools for engineers”
(Clark and Muller, 2012; Whittle, et al, 2017).

1.2 Simple Language for MDE

Our own development of ReMoDeL sought to avoid
creating similar barriers to adoption. We have created
a simple, declarative language in which designers can
rapidly express sets of related concepts in a
metamodel. Metamodels are cross-compiled to Java
packages, containing one class per concept,
automating all the usual Java bookkeeping. A model
is an in-memory graph of instances of these classes,
which can be read from, and serialised as text, in a
format reminiscent of JSON (but not identical).

A model transformation is expressed as a set of
pure functional mapping rules from source to target.
Each rule is idempotent (when applied multiple times
to the same source element, it always maps to the
same target element). This promotes a desirable
divide-and-conquer strategy of expressing rules in
terms of simpler rules, without concerns for rule
ordering or multiple firings. A model transformation
compiles to a Java class, which may either run as a
main program, or may be chained together in a series
of model transformations.

A project in ReMoDeL consists of a new Java
project in Eclipse (or other IDE), which has the
ReMoDeL library on its build-path. The project only
needs a home package with a shell program to run the
compiler, and thereafter all ReMoDeL files are placed
in subfolders {meta, model, rule} of the main project
folder. This is all that is needed to get started.

2 REMODEL SYNTAX

The best way to present ReMoDeL is by example, and
for this we use a popular “Hello World” introductory
example found in the model transformation literature,
the mapping between alternative tree- and graph-like
representations of the same tree structure.

2.1 InTree Metamodel

Figure 1 illustrates an in-tree, a kind of tree in which
every node refers to its parent node directly. Such a
structure may be represented as the following
serialised model text.

Figure 1: Model of an in-tree.

model tree1 : InTree {
 t1 : Tree(nodes = Node[
 n1 : Node(label = "Root"),
 n2 : Node(label = "Branch1",
 parent = n1),
 n3 : Node(label = "Branch2",
 parent = n1),
 n4 : Node(label = "Leaf1",
 parent = n2),
 n5 : Node(label = "Leaf2",
 parent = n2),
 n6 : Node(label = "Leaf3",
 parent = n3)
])
}

From this it should be clear that the Tree t1
consists of a list of Nodes n1-n6, where most of these,
apart from the root node, refer to their parent node.
Every element of the model has a unique ID, such that
they may refer to each other as desired. The type-
declaration in the header tree1:InTree, states that the
model tree1 is an instance of the metamodel InTree.

Figure 2: Metamodel for an InTree.

Figure 2 illustrates the metamodel for an InTree
using the graphical syntax adopted for ReMoDeL.
This repurposes some UML notation (for the sake of
familiarity), in which a metamodel is contained in a
region reminiscent of a UML package, and concepts
are drawn in a style reminiscent of a UML class. The
same metamodel may also be expressed in the
following textual format:
metamodel InTree {
 concept Node {
 attribute label : String
 reference parent : Node
 operation isRoot : Boolean {
 parent = null
 }
 }
 concept Tree {
 component nodes : Node[]
 operation root : Node {
 nodes.detect(node |
 node.isRoot)
 }
 }
}

From this it should be clear that the InTree
metamodel consists of two concepts, Node and Tree.
Node has an attribute label with a simple String type,
and a weak reference to a parent Node. Tree owns a
component list of Nodes; the list type is indicated by
the square brackets following the Node type name.

Concepts may also have pure functional
operations (parameters are optional), which return the
value of their body expression. So, Node is able to
determine if it is the root node, and Tree is able to
filter its nodes to find the root node using detect, a
higher-order filtering operation, whose lambda-
expression tests each owned node in turn and returns
the first found root node.

2.2 Graph Metamodel

Figure 3 illustrates an alternative graph representation
for a tree-like structure, in which the vertices and
edges are modelled explicitly as separate concepts.
Such a structure may be represented in the following
serialised model text.

Figure 3: Model of a graph.

model graph1 : Graph {
 g1 : Graph(vertices = Vertex[
 v1 : Vertex(label = "Root"),
 v2 : Vertex(label = "Branch1"),
 v3 : Vertex(label = "Branch2"),
 v4 : Vertex(label = "Leaf1"),
 v5 : Vertex(label = "Leaf2"),
 v6 : Vertex(label = "Leaf3")
], edges = Edge[
 e1 : Edge(source = v2, target = v1),
 e2 : Edge(source = v3, target = v1),
 e3 : Edge(source = v4, target = v2),
 e4 : Edge(source = v5, target = v2),
 e5 : Edge(source = v6, target = v3),
])
}

From this, it should be clear that the Graph g1
consists of a list of Vertices v1-v6 and a list of Edges
e1-e5. Each Vertex is labelled, and each Edge
connects a given source and target Vertex.

Figure 4: Metamodel for a Graph.

Figure 4 illustrates the metamodel for a Graph
using the ReMoDeL graphical notation. This defines
the structure expressed above, which is obeyed by the

model instance graph1:Graph. The same metamodel
may also be expressed in textual format (Graph
unambiguously names the metamodel and a concept):
metamodel Graph {
 concept Graph {
 component vertices : Vertex[]
 component edges : Edge[]
 operation root : Vertex {
 vertices.detect(vertex |
 not edges.exists(edge |
 edge.source = vertex))
 }
 }
 concept Vertex {
 attribute label : String
 }
 concept Edge {
 reference source : Vertex
 reference target : Vertex
 }
}

There are three concepts: Graph, which consists
of lists of Vertices and Edges, Vertex, which has a
simply-typed label attribute, and Edge, which has two
references to its source and target Vertex.

The Graph operation to find the root vertex looks
a little more involved than for the InTree case, but
should be well understood by anyone familiar with
pure functional programming: the root operation
filters the vertices to detect a unique Vertex satisfying
a given property, which is that there should not exist
any Edge, whose source is that Vertex. Such a Vertex
must be a root.

2.3 Model Transformation

Model transformations in ReMoDeL are provided as
text files in the following format:
transform InTreeToGraph : Trees {

 metamodel source : InTree
 metamodel target : Graph

 mapping inTreeToGraph (inTree :
 InTree_Tree) : Graph_Graph {
 create Graph_Graph(
 vertices :=
 inTree.nodes.collect(node |
 inNodeToVertex(node)),
 edges :=
 inTree.nodes
 .without(inTree.root)
 .collect(node |
 inNodeToEdge(node))
 }

 mapping inNodeToVertex(inNode :
 InTree_Node) : Graph_Vertex {

 create Graph_Vertex(
 label := inNode.label
)
 }

 mapping inNodeToEdge (inNode :
 InTree_Node) : Graph_Edge {
 create Graph_Edge(
 source := inNodeToVertex(inNode),
 target := inNodeToVertex(
 inNode.parent)
)
 }
}

The transformation is named InTreeToGraph and
belongs to the transformation group Trees. The next
lines introduce the source and target metamodels,
saying that the transformation maps a source:InTree
to a target:Graph. The transformation consists of
three mapping rules: inTreeToGraph is the top-level
rule (ordered first), which invokes subsidiary rules
inNodeToVertex and inNodeToEdge.

The simplest rule inNodeToVertex takes an
argument of the kind: InTree_Node and gives a result
of the kind: Graph_Vertex. The concept-names are
prefixed by their owning metamodel, since the source
and target metamodels may sometimes contain
concepts having the same name. The body of the rule
creates a Graph_Vertex, whose label is initialised to
the same value as that of the supplied inNode.

Similarly, the rule inNodeToEdge takes an
argument of the kind InTree_Node and creates a
result of the kind Graph_Edge. This rule invokes the
previous rule to map the supplied inNode to its
source, and the parent of this node to its target.

Finally, inTreeToGraph creates a Graph, whose
vertices are obtained by mapping inNodeToVertex
over the inTree.nodes, and whose edges are obtained
by mapping inNodeToEdge over all but one of the
inTree.nodes, the root node, which is excluded from
the list by without, a pure functional list removal
operation that returns a copy of the list without the
specified element.

The higher-order mapping operation collect
accepts a lambda-expression as its argument. This
consists of a lambda-variable (here, node) separated
by a vertical stroke from the lambda-body, which can
be any expression including the lambda-variable.
The effect of invoking collect on a list is to apply the
lambda-expression to every node in the list, and
collect a new list of the mapped results.

3 REMODEL SEMANTICS

ReMoDeL was designed to have a semantics based
on pure functional programming semantics, for the
sake of formal clarity. No operation, nor any rule,
actually modifies any data structure destructively.

3.1 Properties of Transformations

A model transformation is a pure functional mapping
from a source to a target model. The whole target is
always created afresh by the transformation. Rules
are completely declarative, stating exactly how to
build the target in a compositional way using simpler
rules. This brings certain desirable properties.

Firstly, no other part of the source or target model
is modified by any mapping rule. This avoids hard
problems found in languages with imperative updates
to models, such as the hybrid languages ATL
(Jouault, et al., 2008) and ETL (Kolovos, et al., 2008),
in which it becomes important to control the order of
rule-firing, so that target models are modified in some
appropriate sequential order.

Secondly, rules are idempotent, mapping every
element exactly once. Consider the number of times
the rule inNodeToVertex is called on any given node.
It is called once on every node by inTreeToGraph
when creating the list of Vertices. It is called again
by inNodeToEdge on all paired nodes connected by
edges. During the whole model transformation, the
InNode n2 is given as an argument to inNodeToVertex
on four separate occasions: once when being mapped
to the Vertex v2, once when creating the Edge e1, and
twice more when creating the Edges e3 and e4. The
idempotent property ensures that exactly one copy of
the target Vertex v2 is created, returning the same
instance for all invocations.

Thirdly, models are constrained to be directed
acyclic graphs (DAGs), to ensure that transformations
always terminate. If a model were to contain cycles,
then rules would call each other in infinite regress.
But since it is sometimes profoundly useful to have
back-references, especially to avoid passing the
whole model as an extra argument to a rule,
ReMoDeL allows any component to have a hidden
back-reference called owner, which is set implicitly
when the component is added to its master. Back-
references are not mapped by transformations, and
they are not serialised when a model is saved.

Fourthly, each transformation is unidirectional,
describing a mapping in one direction only. This does
not preclude defining an inverse transformation, to
map the target back to the source. It is possible to
write an inverse transformation GraphToInTree,

which maps a graph-representation of a tree back to
the original in-tree representation. However, the
astute reader will have realised that a graph is a
strictly more general kind of representation, since it
may have more than one root node at the head of the
DAG. Such a graph cannot be mapped (without loss)
back to a tree. It is possible to define partial
transformations in ReMoDeL.

While we have only shown an example of a
mapping transformation, it is also possible to create
merging transformations. These have more than one
source metamodel and construct a target that blends
information from both of the sources. An updating
transformation is merely a mapping transformation
that constructs a new instance of the target model.
Both mapping and merging rules are idempotent, but
for a merging rule, this is judged on the basis of a
tuple of inputs from the source metamodels.
Occasionally, it is desired to have a kind of rule that
always constructs a new instance of the result. For
this, ReMoDeL provides function rules, which map
without idempotence.

Finally, for the more mathematically-inclined,
ReMoDeL transformations have an interpretation
within Category Theory as homomorphisms between
general abstract datatype algebras. The individual
mapping rules are morphisms, mappings between
source and target elements of the algebras. This
property is entailed by the fact that any kind of source
or target metamodel, expressed in the concept-
language, may ultimately be generalised as the “same
kind” of abstract datatype algebra.

3.2 Properties of Metamodels

ReMoDeL was designed to be a conceptual modelling
language, rather than a full programming language.
A concept in ReMoDeL denotes any kind of modelled
structural or behavioural entity that possesses a
number of properties. The properties can only be
drawn from the following kinds:

• An attribute – with a simply-typed value;
• A reference – referring to another concept

(or list, or set) in the same metamodel;
• A component – a strong reference implying

ownership of the related concept;
• An operation – a pure functional operation,

to filter or access part of a concept.

Attributes have simple types taken from the set:
{Boolean, Character, Integer, Decimal, String}. All
references are directed, to preserve the DAG quality
of models (see above). A component is a stronger
kind of reference, meaning that the source concept

owns the target concept. It also supports the implicit
owner back-reference (see above). The intended
difference in the semantics is that if an instance of a
concept is deleted, it may simply forget its references,
whereas its components should be deleted recursively
in a cascading fashion. (This would support a future
implementation of ReMoDeL in C++, which must
manage the allocation of components explicitly).

ReMoDeL operations are without side-effects.
They typically either query their owning concept to
filter its stored properties for a subset of these, or they
compute some kind of derived result. The modeller
adds such query operations to a concept as needed,
usually to make the process of writing a model
transformation simpler.

ReMoDeL allows inheritance between concepts.
A derived concept may inherit a base concept in its
opening declaration (before the set of properties).
The derived concept obtains all the properties of the
base concept, but may override some by redefining
them. A redefined reference or component may
restrict the type of concept to which it refers. An
operation may restrict its result type and may also
replace its function body. This supports dynamic
binding. ReMoDeL also allows inheritance between
metamodels. A derived metamodel may inherit a
base metamodel in its opening declaration (before the
set of concepts). The semantics is similar to
importing from a remote package, except that it is
possible to override an inherited concept with a
redefinition of that concept. Together, these features
justify the acronym ReMoDeL (Reusable Model
Design Language).

3.3 Properties of Expressions

ReMoDeL has an extensive expression language. It
supports the Boolean constants: false, true and the
operations and, or and not. It supports the empty
reference null. It supports the six inequalities and a
full range of arithmetic operators, including divide,
modulo and exponent. It offers a ternary conditional
if – then – else – which returns the value of one or
other branch. It offers a range of standard String
operations, which support searching, substring
extraction, concatenation and case conversion, which
is useful in rules that relate names and types of things.

As well as the basic types and concept types,
ReMoDeL has pure functional list and set types.
These are defined by appending [] or {} onto any type
identifier, to denote respectively a list, or a set of that
type. Any concept may use asList or asSet to convert
it into a singleton of that type (when applied to
collections, these may convert the collection-type).

Lists and sets offer the common operations: isEmpty,
size, has, count, with and without. Sets offer union,
intersection, difference with the usual semantics and
a pick operation for the axiom of choice, to select an
arbitrary set element. Lists are ordered and offer first,
rest and append with the usual semantics.

One of the most important and useful features of
lists and sets is that they offer the following higher-
order operations, which perform quantification,
filtering, mapping and reduction on collections. Each
of these has a lambda-expression as its argument:

• Exists(x | predicate(x)) – returns true if any
element satisfies the predicate;

• Forall(x | predicate(x)) – returns true if all the
elements satisfy the predicate;

• Detect(x | predicate(x)) – returns the first
element satisfying the predicate;

• Select(x | predicate(x)) – returns those
elements that satisfy the predicate

• Reject(x | predicate(x)) – returns those
elements that fail to satisfy the predicate

• Collect(x | function(x)) – constructs a list (or
set) of the result of applying the function to
every element of the list (or set).

• Collate(x | function(x)) – appends a list (or
unions a set) of the list- (or set-) results of
applying the function to every element of the
list (or set).

• Reduce(x, y | reduction(x, y)) – constructs a
single value by combining all elements.

These operations are sensitive to the kind of
collection on which they are invoked, and may return
a collection of the same kind (whether a list, or a set).
Filtering a heterogeneously typed collection may
specify a more homogeneously typed result, which is
useful, since the result’s elements are automatically
down-cast to the specific type, which may offer
access to more specific operations.

The difference between the collect and collate
operations is that collect expects the mapped function
to return a single object, whereas collate expects the
mapped function to return a list (or set), which must
then be flattened. The reduce operation is a limited
kind of left-fold reduction: if the collection is empty,
it returns null; if the collection is a singleton, it returns
that element; otherwise, it applies the binary
reduction to combine multiple elements of the
collection. This can be used to find the sum of a list,
or the greatest element of a set, for example.

For further information about the expression
language, the reader is invited to consult the report
ReMoDeL Explained (Simons, 2023a). For further
information about the cross-compilation model and
how this preserves the semantics of the language, the

reader is invited to consult the report ReMoDeL
Compiled (Simons, 2023b).

4 REMODEL IN PRACTICE

ReMoDeL has been trialled in a number of student
projects at the University of Sheffield. The learners
are students on Computer Science undergraduate or
postgraduate master’s programmes. They undertake
different kinds of model transformation problems in
different conceptual domains.

4.1 Learning ReMoDeL

Undergraduates typically have a strong background in
Java programming and one semester’s exposure to
functional programming in Haskell. Master’s students
may not have had functional programming experience.
We find that the undergraduates adapt quickly to the
pure functional style of transformation rules, although
master’s students also acquire this skill eventually.
Once the idempotent property of mapping rules is
understood, students soon adapt to the declarative
divide-and-conquer style of mapping transformations.

A second acquired skill is in learning how to
construct a suitable metamodel for the conceptual
domain in question, especially how to factor out
common features of different concepts in a concept
hierarchy. This usually comes more easily to those
with longer object-oriented programming experience,
especially if they are familiar with refactoring classes
in a class hierarchy.

Using ReMoDeL within a standard Java IDE (we
have used Eclipse, IntelliJ IDEA and NetBeans) can
present challenges for some who have never managed
a Java project with an external library. Students learn
about configuring the build-path of their project.
Another skill is to keep the state of the IDE consistent.
For example, Eclipse monitors the state of a Java
project using metadata on its files and dependencies,
which are updated only by the IDE’s tools. Since
ReMoDeL may independently create files and whole
Java packages in a separate thread, it is possible for
the metadata to become stale. In this case, the user
must remember to refresh the project frequently.

4.2 Problem Domains

Another test of ReMoDeL is in seeing what kinds of
problem domains it can be applied to with success.
One of the first full-strength problems on which we
tested its power to conceptualise domain models and
capture complex chains of transformations was the

UML to SQL transformation problem. This involved
creating separate metamodels for the UML Class
Diagram, the traditional Entity-Relationship Model, a
normalised Object Dependency Graph, and an SQL
Database Model capturing data definitions.

We developed a chain of transformations that
could start either with UML, or a traditional ERM.
UMLtoERM converted a class diagram into an ERM,
in which UML’s special semantic relationships
generalisation, aggregation and composition, were
mapped with associations to general relationships.
ERMtoNorm normalised the ERM to 3NF, merging
all entities connected one-to-one, splitting many-to-
many relationships by introducing linker entities, and
redirecting any affected relationships. NormToEDG
converted all edges into directed, named references
from the dependent to the master type. EDGtoSQL
mapped all object types to tables, all attributes to
columns, and all references to additional renamed
columns, constructing primary and foreign keys that
grouped these appropriately. For a complete account
of this project, the reader is invited to refer to the
technical reports (Simons, 2022a; 2022b).

4.3 Code Generation

To finish off the transformation chain, we wrote a
simple code generator, to output SQL Data Definition
Language from the final SQL Database model. This
was achieved using a hand-written Java code
generator class that followed the Visitor Design
Pattern (Gamma, et al., 1995). An abstract Visitor
was defined in the SQL Database metamodel, which
compiled to a Java class. The hand-written code
generator was a subclass of this Visitor, overriding the
trivial method signatures. In this way, the metamodel
could be recompiled without overwriting the hand-
written generator methods.

5 CONCLUSIONS

We have succeeded in designing a fresh model
transformation language, with a succinct syntax and
clean semantics, and with a small runtime library that
integrates easily with existing Java IDEs. Our initial
experiments have shown that new users adapt rapidly
to the language and compiler tools.

What is pleasing is that their focus of attention
shifts to solving the real conceptual modelling and
model transformation problems, rather than having to
spend all their time understanding and fixing issues
with the transformation architecture (Lano, 2022) or
tools (Whittle, et al., 2017). A similar goal motivates

the designers of DSL tools, such as MPS (JetBrains,
2024). But ReMoDeL is a general-purpose, rather
than a domain-specific, modelling language.

Our future work arises out of different student
projects, in which we have been able to explore new
alternatives to UML, including a Task Model of
clustered tasks and actors which are transformed into
the State Model of the target system’s GUI with
authorisation (a transformation of system behaviour),
or a simple Impact Model showing the CRUD effects
of Tasks upon Objects, offering completeness checks
on object lifecycles. These serve a good basis for
cross-checking and refinement; we will extend and
develop this family of models, which we tentatively
name μML (the micro-Modelling Language).

REFERENCES

Alizon, F., Belaunde, M., DuPré, G., Nicolas, B., Poivre, S.
and Simonin, J. (2008). Les modèles dans l'action à
France Télécom avec SmartQVT. Ingénierie Dirigée
par les Modèles, Congrès Journées Neptune 5, Paris.
Génie Logiciel 85, 35-42.

Batory, D. and Altoyan, N. (2020). Aocl : A pure-Java
constraint and transformation language for MDE. Proc.
8th Int. Conf. MODELSWARD, 319-327.

Biehl, M. (2010). Literature study on model
transformations, Technical Report, Embedded Control
Systems, Royal Institute of Technology, Stockholm
(Stockholm: KTH).

Clark, A., Sammut, P. and Willans, J. (2008). Applied
Metamodelling – a Foundation for Language-Driven
Development, 2nd ed., (Sheffield: Ceteva). Available:
https://repository.mdx.ac.uk/item/82x67.

Clark, T., Muller, P.A. (2012). Exploiting model driven
technology: a tale of two startups. Software Systems
Modeling 11(4), 481–493.

Drey, Z., Faucher, C., Fleurey, F., Mahé V. and Vojtisek,
D. (2010). KerMeta Language Reference Manual,
November (Rennes: IRISA).

Eclipse Foundation (2008). EMF: Eclipse Modelling
Framework, (Boston: Addison-Wesley). Available
online: https://eclipse.dev/modeling/emf/

Eclipse Foundation (2021). org.eclipse.emf.ecore Java
package documentation. https://download.eclipse.org/
modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore
/package-summary.html

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-
Oriented Software (Boston: Addison-Wesley).

Jouault, F., Allilaire, F., Bézivin, J. and Kurtev, I. (2008).
ATL: a model transformation tool, Science of Computer
Programming, 72, 31–39.

JetBrains (2024). Meta Programming System. Available
online: https://www.jetbrains.com/mps/

Kolovos, D., Paige, R. and Polack, F. (2008), The epsilon
transformation language, Theory and Practice of Model

Transformations, Lecture Notes in Computer Science,
5063, 46–60.

Lano, K. (2016), Agile Model-Based Development using
UML-RSDS (Boca Raton: CRC Press).

Lano, K. (2018). The UML-RSDS Manual, Technical
Report, Kings College, London. https://nms.kcl.ac.uk/
kevin.lano/uml2web/umlrsds.pdf

Lano, K. (2022). Comment on Laurie Tratt’s blog post:
UML: my part in its downfall. Posted 10 March 2022.
https://tratt.net/laurie/blog/2022/uml_my_part_in_its_
downfall.html#comment-MSgn5NTaN8yM.

Mens, T. and van Gorp, P. (2006). A taxonomy of model
transformations. Electronic Notes in Theoretical
Computer Science, 152 (Amsterdam: Elsevier), 125-142.

OMG (2003). CWM – Common Warehouse Metamodel,
March. https://www.omg.org/spec/CWM/.

OMG (2014). OCL – Object Constraint Language,
February. https://www.omg.org/spec/OCL/.

OMG (2014). MDA – The Architecture of Choice for a
Changing World, June. https://www.omg.org/mda/.

OMG (2015). XMI – XML Metadata Interchange, June.
https://www.omg.org/spec/XMI/.

OMG (2016). MOF – Meta Object Facility, October
https://www.omg.org/spec/MOF/.

OMG (2016). QVT – MOF Query/View/Transformation,
June. https://www.omg.org/spec/QVT/.

OMG (2017). The Unified Modeling Language, December.
https://www.omg.org/spec/UML/.

Simons, A.J.H. (2022). ReMoDeL Data Refinement: data
transformations in ReMoDeL, Part 1. Technical
Report, 25 July, University of Sheffield.
https://staffwww.dcs.shef.ac.uk/people/A.Simons/rem
odel/current/ReMoDeL_Data_Refinement_Part1.pdf

Simons, A.J.H. (2022). ReMoDeL Data Refinement: data
transformations in ReMoDeL, Part 2. Technical
Report, 25 July, University of Sheffield.
https://staffwww.dcs.shef.ac.uk/people/A.Simons/rem
odel/current/ReMoDeL_Data_Refinement_Part2.pdf

Simons, A.J.H. (2023). ReMoDeL explained: an
introduction to ReMoDeL by example. Technical
Report, 25 January, University of Sheffield.
https://staffwww.dcs.shef.ac.uk/people/A.Simons/
remodel/current/ReMoDeL_Explained_25Jan23.pdf

Simons, A.J.H. (2023). ReMoDeL compiled: the cross-
compilation of ReMoDeL to Java by example.
Technical Report, 25 January, University of Sheffield.
https://staffwww.dcs.shef.ac.uk/people/A.Simons/
remodel/current/ReMoDeL_Compiled_25Jan23.pdf

TCS: Tata Consultancy Services (2007). ModelMorf, a
model transformer. Now-defunct product website, no
longer available.

Whittle, J., Hutchinson, J. and Rouncefield, M. (2014). The
state of practice in Model-Driven Engineering. IEEE
Software, May-June (Washington: IEEE Computer
Society), 79-85.

Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H. and
Heldal, R. (2017). A taxonomy of tool-related issues
affecting the adoption of model-driven engineering,
Software Systems Modeling, 16 (2), 313-331.

